

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

STUDIES IN THE COMPLETENESS AND EFFICIENCY

OF THEOREM-PROVING BY RESOLUTION

by

Robert Kowalski

Ph.D. thesis

University of Edinburgh

April 1970

ii -

ABSTRACT

Inference systems and search strategies E for

IT- are distinguished from proof procedures (9 =

The completeness of procedures is studied by studying

separately the completeness of inference systems and of

search strategies. Completeness proofs for resolution

systems are obtained by the construction of semantic

trees. These systems include minimal M -restricted

binary resolution, minimal c -restricted M-clash resolution

and maximal pseudo-clash resolution. Certain refinements

of hyper-resolution systems with equality axioms are

shown to be complete and equivalent to refinements of

the pararnodulation method for dealing with equality.

The completeness and efficiency of search strategies

for theorem-proving problems is studied in sufficient

generality to includa the case of search strategies for

path-search problems in graphs. The notion of theorem-

,proving problem is defined abstractly so as to be dual to

that of and" or tree. Special attention is given to

resolution problems and to search strategies which generate

simpler before more complex?f'O ,

For efficiency, a proof procedure (S , } requires

an efficient search strategy ', as well as an inference

system .S which admits both simple proofs and relatively

few redundant and irrelevant derivations. The theory

of efficient proof procedures outlined here is applied

to proving the increased efficiency of the usual method

for deleting tautologies and subsumed clauses. Counter-

examples are exhibited for both the completeness and

efficiency of a?ternative methods for deleting subsumed

clauses.

The efficiency of resolution procedures is improved

by replacing the single operation of resolving a clash

by the two aperations of generating factors of clauses

and of resolving a clash of factors. Several factoring

methods are investigated for completeness. Of these the

m-factoring method is shown to be always more efficient

than the Wos-Robinson method.

ACKNOWLEDGEMENTS

This research has been supported by an I.B.M.

Fellowship administered by Imperial College and more

recently by the Science Research Council.

I an indebted to my supervisor Dr. Bernard Meltzer

for valuable encouragement and guidance and to my colleague

Mr. Pat Hayes for many hours of rewarding collaboration

and criticism. Thanks are also due for helpful discussions

with my colleague. Miss Isobel Smith and Mr. Donald Kuehner

as well as with Dr. Cordell Green, Dr. Ira Pohl, Professor

J.A. Robinson and Dr. Larry Wos.

I am grateful to the many people who have shared the

burden of typing this thesis.

To my wife Danusia and to my daughters Dania and Tania

I am especially grateful for their patience and sacrifice.

TABLE OF CONTENTS

Abstract o ii
Acknowledgements o iv

Chapter.! 0 : A Theory of Efficient Proof Procedures. 1

0.1 Proof Procedures, Inference Systems and
Search Strategies 2

0.2 Refinements and the Elimination of
Redundant and Irrelevant Inferences. . 20

0.3 Completeness of Proof Procedures 34

0.4 Conclusion 35

Chapter 1 : The Syntax of Resolution. 46

0.1 Expressions 47

1.2 Substitutions . . . o 48

1.3 Unification . . . o 49

1.4 Clashes o . . . o 53

1,5 Cash Restriction . o 54

1.6 Factoring. 55

1.7 Trees o . . o o . . 59

1.8 Derivations 62

1.9 Search Strategies 64

1.10 Contractions . o o . o o . 68

1.11 Deletion of Subsumed Clauses . . . 78

1.12 Deletion of Tautologies 69

1.13 Minimal Derivations 94

Chapter 2 : The Semantics and Completeness of
Resolution 102

2.1 Herbrand Interpretations . . o 103

2.2 Semantic Treeso o 107

2.3 Semantic Trees and Derivations 112

2.4 M-Clash Derivations 116

2.5 Deduction Completeness 117

2.6 O(-Ordering and Binary Resolution . . . 124

2.7 c(-Ordering and M-Clashes 130

2.8 Pseudo-Clashes 132

2.9 Hyper-resolution and P1-resolution . . . 137

2.10 Maximal Pseudo-clash Refutations 140

Chapter 3 : Paramodulation and Hyper-resolution . . 145

3.1 Hyper-resolution with Equality Axioms . .145

3.2 Paramodulation 147

3.3 Comparison of the Hyper-resolution and
Paramodulation Methods. 149

3.4 Trivialization of Inequalities 155

3.5 Permutation of Inferences 160

Chapter Search Strategies and Factoring. . . 166

4.1 Theorem-probing Graphs. 166

4.2 Search Strategies for Theorem-proving
Problems.173

4.3 Heuristic Functions and Diagonal Search. 178

4.4 Upwards Diagonal Search Strategies for
Resolution 183

4.5 Admissibility and Optimality of CD and (l)u.188

4.6 Resolution of Marked Factors with
i-Factor as nucleus. 197

4.7 m-Factor Derivations 201

References . . 9 9 . . 9 .209

I

4ha ter 0

The subject of this thesis is the completeness and

efficiency of various theorem--proving methods. These methods

apply primarily to resolution inference systems [39] and are

investigated by means of theoretical, rather than experimental,

studies. The theoretical methodology of these studies implies

that they are oriented mainly toward automatic, rather than

interactive, theorem-proving. Relationships between

completeness and efficiency are remarked upon throughout the

body of this thesis and are explored more thoroughly in this

preliminary chapter,

The theorem-proving methods investigated in this

thesis include deletion rules, factoring restrictions and

minimality, cx-ordering and M--clash restrictions. Chapters

1 and 2 concentrate respectively on the syntax and semantics

of resolution systems. In chapter 3, restrictions on the

paramodulation method for dealing with equality [38] are

studied and related, for efficiency and completeness, to

the hyper--resolution method using equality axioms [20]. The

completeness and efficiency of search strategies for theorem-

proving problems are investigated in chapter 4. Parts of

chapters 2, 3 and 4 have already been reported in [17], [20]

and [21] respectively.

The major function of this introductory chapter is

to outline and defend a theory of efficiency for automatic

theorem-proving. This theory incorporates conclusions

formulated after the investigations of chapters 1-4 and

is intended to provide a framework within which these

investigations can be evaluated. For this latter reason

we have chosen to place this chapter at the beginning,

rather than at the end, of this thesis.

Section 0.1 introduces and discusses the

significance of a fundamental distinction between inference

systems j , search strategies for I and proof
procedures Relationships between the

efficiency of proof procedures and properties of inference

systems are investigated in section 0.2. Further

investigations, in 0.3, relate the efficiency of proof

procedures to the completeness of inference systems and

search strategies. An earlier version of a part of this

chapter was reported and discussed in a panel discussion at

the Fourth Arnual Systems Symposium [19] .

0.1 Proof Procedures, Inferenne Svsters and Search Strategies.

A funaamental distinction, basic to the study of

efficiency, is that between a system of axioms and inference

rules (and a proof procedure _ (f ,) for obtaining

proofs admissible for f by means of a search strategy

In the case of resolution proof procedures, f is a function

of input sets of clausas S0. Thus f = s0) consists

3

of the set of clauses S
0

together with resolution and

possibly factoring rules. We also write = ?(SC) when

SC is the set of axioms of a proof procedure (r, L
which derives theorems directly from axioms. Thus in

general, an inference system f (SC) consists of an initial

set of sentences SC together with inference rules r which

can be applied to construct derivations from SC. (The set

S0 may be fixed, when it consists of a given set of axioms,

or may be a free variable, when it stands for a set of

axioms supplemented by different special hypotheses and,

possibly, by negations of theorems to be proved.) Derivations

co,.istructible from sentences in S
0

by means of the rules

are said to be admissible for The set S* of all

sentences derivable from SC is called the search space

determined by j (S0) . A search strategy for S is
an algorithm for generating derivations admissible for f -in
order to eventually generate a proof of a given theoxe m.

Thus Z induces an ordering of occurences of sentences

from S* defined by the sequence in which derivations of

these sentences are generated by . We distinguish

between an admissible derivation 6) of a sentence C and

the set of sentences generated by 7 before obtaining a

first proof of C. C contains only sentences necessary

for proving C whereas will almost always generate,

before proving C, proofs of sentences irrelevant to a

first proof of C. Search strategies for resolution systems

Va 4

include level saturation, unit preference [53], fewest

components [50] and diagonal search (chapter 4).

Although we restrict attention to proof procedures

of the form (,), it sho%21_d be noted that not all
proof procedures (,an be analysed as consisting of inference

systems and search strategies I for generating proofs

forward from axioms (or input sets of clauses) to theorems

(or Q). In general it is necessary to consider

procedures 6 which generate proofs backwards

from theorems to axioms of f by means of a search strategy

The system is dual to an inference system in

the sense that its operations are the inverse of inference . ^
rules r . The search space S* determined by consists

of all sentences which can be used to derive the given theorem

and is structured in the form of an and/or tree [49]. Beth,

Kleene [18] and other researchers have observed that semantic

tableau procedures obtain proofs constructible by means of

Gentzen-type axioms and inference rules . The semantic

tableau method consists of a search algorithm 15- for the

search space S1 determined by a system f dual to It is

interesting to note that Beth's original procedure employed

an incomplete which resulted in the incompleteness of

[29]. The Geometry Theorem-Proving lInchine [9] is an
n

incomplete procedure of the form (S ,) employing incomplete

n
Given a system S or r it is often possible to

5

construct a corresponding dual system. A system

dual to a resolution system 5 , can be constructed by

including in the search space S* for .j all clauses which

can occur in resolution derivations of the null clause.

S* defined in this way is the set of all clauses

constructible from a potentially infinite set of variables

and from the predicate and function symbols occurring in

S. For the system ,S of Slagle's program for symbolic

integration [49], an inference system ?"(S0), dual to ,

can be constructed by defining SQ to be the set of

integration formulae of some integration table and by

defining fl to be a set of rules, inverse to those of T",

for constructing new formulae from existing ones. The

n
search spaces S* and S* for a system and its dual need not

n
be identical. For the resolution systems `j and r above,
S* C S*, whereas for the symbolic integration systems

n
and 5 C S*. (X C Y if X is properly contained

in Y.)

The notions of and/or tree problem (for systems 'f')
and theorem-proving problem (for systems '-, chapter 4) are

dual to one another and both generalise the tree (or graph)

problem [8] of finding a path between initial and terminal

nodes. Given a system Tor having constructed a

syste,.a dual to the one given, it is possible to construct

search strategies for the combined search space S* U S.

6

Such strategies have been studied for the tree problem and

are referred to as bi-directional search. Many of these

methods, including the cardinality comparison method of

[32], extend to the more general situation. It is

interesting to note that when the cardinality comparison

method is applied to the resolution or integration systems

and ',r"' above, it avoids generating objects in S* - S *1

for the resolution example, and in Sk- S*, for the integration

example.

The remainder of this thesis is concerned explicitly

with proof procedures of the form (T-, 2). Despite this

restriction, most of the remarks in this chapter apply

equally to procedures (,) as well as to bi-directional

procedures more generally.

Proof procedures can usually be analysed

in more than one way as inference system and search

strategy. Set of support resolution can be treated as

either a restricted inference rule determining a restricted

search space or as a restricted search strategy for an

unrestricted resolution rule. More generally, restrictions

on derivations generated by 63 can often be incorporated

into the definition of either S or The significance

of an appropriate analysis (§ ,) of is related to

the distinct notions of completeness which can be formulated

for S , Land P.

An inference system S (S0) is complete for a set

of sentences S if, whenever SC implies a sentence C E

then there exists a derivation of C from S
0

which is

admissible for T-- '-r(SC) is refutation complete for

(' if, whenever SC E E5 implies a contradiction then

there exists an admissible derivation from S
0

of an

effectively recognizable contradiction (e.g. 1J). The

existence of admissible derivations and therefore the

completeness or refutation completeness of inference

systems S is independent of search strategies for

A search strategy I for r is complete for S if
will eventually generate all derivations admissible for

(assuming that F. can continue generating derivations

after obtaining a first proof of a desired theorem).

may be complete or incomplete independently of the complete-

ness of . In particular r may be complete for

but may be incomplete if ,. will not generate some

derivation admissible for j ti Cn the other hand,

may be complete when "r is incomplete, by virtue of

exhaustively generating all derivations admissible for S a

A proof procedure = (-r (so), ;) is complete for

(refutation complete for Q5) if whenever S
0

implies

C E Qf (SC E G and C some effectively

recognizable contradiction) then 7 eventually generates

an admissible derivation of C from SC. Thus 6) can

be complete (or refutation complete) for G even when E-

is incomplete for S : for example, when Cy. is the set

of all sets of clauses, 63 = (f , 57-.) is set of support

resolution, S is unrestricted resolution and generates

all and only those derivations admissible for which are

compatible with the set of support restriction. However

is incomplete for if is incomplete for and,

equivalently, is complete for Q' if 0 is. The set

Q' is usually the set Q5 * of all sentences constructible

in the language of f . Situations where C C Q5k occur in

the case of decision procedures which are incomplete for 5
but complete for the decidable subset Q5. More generally

all proof procedures incomplete for (y * are complete for

some proper subset (C (''* (e.g. (_ A). Unless

stated otherwise, the set (relative to which inference
systems and proof procedures are evaluated both for

completeness and for efficiency is taken to be the set for

which 6) is expected to trove theorems. (More detailed

discussion related to this topic is contained in the first

part of section 0.3.) For the most part all remarks

concerning completeness a?ply equally to refutation

completeness. Unless stated otherwise, the term

'Q completeness" is used to refer to both kinds of

completeness.

It is interesting to note that the original

completeness proofs fcr unrestricted resolution [39],

-9-

hyper-resolution [40], clash resolution [42] and AN-clash

resolution [51] are all stated directly for proof procedures

z.) where F can be interpreted as a complete level

saturation search for These completeness proofs

imply the completeness of the corresponding resolution

system S and also of resolution procedures (f , for

any complete F' for The original completeness

proofs for set of support [54], resolution with merging [2]

and linear resolution [23], [24] are stated directly for

inference systems ,f . All completeness theorems in this

thesis are stated explicitly either for inference systems

or f o:? search strategies.

When analysing a procedure ?) for an inference

system f and search strategy F. it is convenient to have

incorporate the logical restrictions of l) and to

have incorporate its heuristic restrictions. Suppose

that a procedure 0 = ('1 T) is complete with incomplete

Y. and suppose that there exists an equivalent procedure

(D'' , 1) = (S ,) such that is complete for

The heuristic restrictions of P incorporated in 2- are

transferred to logical restrictions in S '. In the

Sr s

following discussions we shall assume that proof procedures

are analysed in a way which minimizes their heuristic

restrictions. This convention implies that restrictions

such as set of support, P1-resolution, etc. are incorporated

-- 10

in the inference syster of resolution procedures. In

general whenever = (S ,) _ (S ', ") and

S ' * C S* then 61 = (J' "' , ') is considered to be the

preferred analysis of 6 If Z' is conplete for

then the heuristics incorporated in Z' are restricted

to imposing an ordering on the sequence in which admissible

derivations are generated by Z'.

The distinction between inference systems f and

proof procedures 0 _ (f , y) induces an additional
distinction between measures of simplicity (or complexity)

of derivations admissible for and measures of ease (or

di`_'ficulty) of obtaining such derivations. A related

distinction between notions of complexity and difficulty

can be observed in the context of informal riathematics.

Informally proved theorems almost always have `'sore than one

proof (derivation), some of which are simpler than others.

In particular it is not uncommon for early proofs of theorems

to be more complex than later proofs. Indeed an important

part of mathematical activity is concerned with just this

simplification of complex proofs. It is not difficult to

construct precise measures of complexity for informally

obtained proofs. What is wanted is that such measures be

compatible with intuitive notions of complexity. The

number of distinct sentences occurring in a given derivation

provides a pleasure of complexity which is approximately

11 -

satisfactory in this respect. A more appropriate measure

might be the total number of distinct symbols occurring

within the given derivation or perhaps some combined measure

giving different weights to numbers of sentences and numbers

of symbols. Measures formulated for informal derivations

can be applied to derivations admissible for formally

defined inference systems. For inference systems (such as

resolution) which admit derivations () of tree-like

structure, the largest number of sentences occurring in any

one branch of (?) (level of C) has often been treated as

a measure of the complexity of 0 . The preced-ing and

subsequent remarks suggest that a more appropriate measure

might involve the total number of distinct sentences or

symbols occurring in C. In any case, for the remainder of

t1-is thesis it suffices for the most part to assume only

that complexity of derivations is defined in such a way that

no derivation is erer simpler than any of its subderivations.

In this connexion we note that contractions and semi-contractions

O t of derivations 6 (section 1.10) tend to be simpler

(and never significantly lore complicated) than ® .

The difficulty of informally obtaining a proof of

a given theorem coincides with the total effort needed to

obtain a first proof and includes work done on unsuccessful

attempts. This effort can be quantified in a variety of

ways: in particular, by the total amount of time expended

- 12 -

or by the total number of sentences (or symbols) constructed

before obtaining a first proof. Similar measuros of

difficulty can be applied to theorems proved by formally

defined proof procedures. As a first approximation it is

convenient to identify this difficulty with the total number

of occurrences of sentences (or derivations) generated

before a first proof. Compared with measuring difficulty

in terms of time, this measure has the advantage of allowing

comparisons of difficulty to be made among proof procedures

and informal theorem-provers independently of the computer

implementation of proof procedures.

For the first proof of a given theorem, whether

obtained formally or informally, measures of difficulty can

be applied to measure efficiency. More specifically we

shall regard a proof method as more efficient than a

vethod 60 2 for proving a given theorem when the number of

derivations generated by (YI before obtaining a first proof

is less than the number generated by 02. This measure of

efficiency allows comparison of proof procedures relative to

a given theorem, it does not provide a direct means of

evaluating for efficiency a single proof procedure which is

intended to obtain proofs of theorems within some set of

sentences 425 C W. For this purpose we shall assure

that some informal proof method e* is given and assumed

to be an ideal to which all formal proof procedures are

13 ..

compared for efficiency within G . Thus, in particular,

when we require of that formal difficulties coincide

with informal difficulties, this requirement can be

interpreted as imposing a norm that for all theorems

in G difficulties are equal both for 6 and 6D', or

more liberally that for all theorems in difficulties

for 6) and 5)* differ by at most some given E (e may

be allowed to depend upon n, the difficulty of proving the

given theorem by means of 1.? *), or still more liberally

that average differences in difficulties for theorems in

4' are no greater than E (where E may depend upon n).

Although none of these precise formulations admits an

effective test for determining whether 6) meets the desired

requirement, they serve the important function of clarifying

the intended interpretation of the more imprecise formul-

ation. We intend to identify the reauirement that a

proof procedure (5) be efficient with the requirement that

difficulties of proofs of theorems in (5 obtained by

coincide with those of proofs obtained by P *. We intend

further that this latter requirement be interpreted in the

most liberal sense. Various objections to the identification

of our requirement with that of efficiency can be countered

by elaborating upon the choice of the informal method (

or by liberalising the tolerance function E. (We assume

that tY * is never less efficient than any formal method

For, in particular, 6) * can be assumed to be intelligent

enough to be capable of employing the r.ethods of (P .

Recall too that difficulties are measured in terns of the

number of alternative possible subproofs examined before

finding a first proof - and not in terms of time.) In any

case we do not intend so much to define an absolute standard

of efficiency as much as we intend to explicate in useful

form the intuitive notion which we interpret as being

relative to variable standards of human performance. The

value of this explication depends upon its utility for

founding the theory of efficiency presented in this chapter.

As in the case of informal methods of proof, the

efficiency of a proof procedure 6 = (1,) is related

to the complexity of proofs admissible for f u In

particular, if .or a given theoi 1 admits no proofs

containing fewer than n sentences, then n is a lower

bound on the difficulty of proving the theorem by means of

Jn' It has been common to confuse complexities of

simplest proofs admissible for inference systems with the

efficiency of proof procedures. This identification

of simplicity with efficiency is a mistaken one since, for

both formal and informal methods, not only may simple proofs

be difficult to obtain but complex proofs may sometimes be

easier to find than simpler ones. Similarly mistaken is

the identification of efficiency with the degree to which the

-- 15 -

ratio of the number of sentences occurring in a first proof

to the number of sentences generated before finding that

proof approaches unity. Relative to this measure a proof

procedure is most efficient when it generates only sentences

occurring in a srigle first proof - independently of the

complexity of that proof which may be so great that it

contains far more sentences than is tolerable by comparison

with informal methods. Relationships between the complexities

of proofs and the efficiency of proof procedures (1 , 7)
depend upon several factors including the numbers and kinds

of rc,dundant and irrelevant derivations admitted by T and

the efficiency of the search strategy E. for T. Before

investigating in section 0.2 properties of inference

systems which are relevant to the efficiency of proof

procedures, we conclude this section with several remarks

concerning search strategies.

Whereas proof procedures admit a notion of efficiency,

no such notion applies to inference systems in the absence

of search strategies. In contrast, the efficiency of a

search strategy , for an inference system S can be

studied independently DP- the efficiency of (3"', ,.).

For a given S , a strategy "
1

is more efficient than

L 2 when Z. generates fewer derivations than does E2

before the generation of a first proof. A proof procedure

6 = (S , E) can be hopelessly inefficient even when

- 16

a. is most efficient for 7% Such a situation arises

in the example of the preceding paragraph where S admits

proofs of only intolerable complexity and L generates no

sentences not occurring in the first and simplest proof of

the given theoremw Although efficient search strategies

cannot guarantee efficient proof procedures, efficient

(, 'E 1) can be rendered intolerably inefficient by

employing, instead of Z, an inefficient search strategy
In a worst case, -2 might be an incomplete

search strategy which, generrIting a potential infinity of

irrelevant derivations, delays forever the generation of

proofs. 2 might be complete but delay the generation

of a first proof beyond some limit of tolerable difficulty.

In any case the goal of constructing efficient proof procedures

can be net only by the development of efficient search

strategies. Since formally defined theorem-proving

problems generalise the path-finding problem for graphs,

it is reasonable to expect that methods employed to increase

the eff icienty of graph searching can be extended to methods

for theorem-proving. These methods include the use of

learning, analogy, induction and other heuristic techniques

studied in the field of artificial intelligence. The

diagonal and upwards diagonal search strategies of chapter 4

are intended to provide a theoretically sound framework for

the extension of heuristic methods to theorem-proving problems.

- 17 --

Experience gained through research in artificial

intelligence suggests that the efficiency of search

strategies can be improved by simulating rsethods employed

by intelligent beings. In the case of theorem-proving the

simulation of intelligent methods suggests that search

strategies should aim at generating simpler before more

complex proofs while generating non-proofs in a selective

order based upon intelligent estimates of their relevance

to a simplest admissible proof. The suggestion that

search strategies should attempt to generate simpler

before more complicated proofs may be a controversial one.

It is put forward here for three reasons: (1) The

convention for analysing proof procedures in a way which

minimizes their heuristic restriction implies that simple

proofs which are not first generated by an efficient

will tend to be inadmis'si,ble for 5 ; (2) within

constraints imposed by logical considerations affecting

efficiency, all else being equal, mathematicians seek to

find simpler before more complicated proofs; (3) most

importantly, proofs of increased efficiency for alterations

to inference systems require the assumption that Z...

generates, before all other proofs, the simplest proof

admissible for This third point will be elaborated

in section 0.2.

It is interesting to note that certain inference-

- 18 -

related rules can be defined only in the eontext of search

strategies. Deletion of variants and, more generally, of

subsumed clauses is an important example in the case of

resolution procedures: it is impossible to state that

subsumed clauses ao not occur within a refutation 6) of an

initial set of clauses S
0

without referring to the subsuming

clauses which themselves need not occur either in 6) or

SO. Both the completeness and efficiency of deleting

subsuming clauses depends upon the sequence in which search

strategies generatennresolvents of clashes. Completeness

of deletion rules ,, for procedures IP is relative to

the completeness of 6) . Q is complete relative to

G if 6' , employing 6 , generates a proof of a

theorem whenever , without (R , generates a proof of

the same theorem. The completeness of deleting subsumed

clauses has been proved relative to procedures (S ,)

where "., is level saturation and f is unrestricted

binary resolution [39] or AM-clash resolution [481. Our

own proof [17] fails because no regard is taken of the

dependency of deletion rules upon search strategies.

Completeness of the usual deletion rule for subsumed clauses

is proved relative to (S,) for most resolution systems

'S and search strategies Y- in section 1.11, where counter-

examples are also exhibited for the relative completeness

and efficiency of alternative formulations of this same

-19-

deletion rule. In this connexion we note that we have been

unable to prove increased efficiency except for the case of

deleting newly generated subsumed clauses. The relative

completeness and increased efficiency of deleting tautologies

is a simpler but not entirely trivial matter (section 1.12).

For both deleting tautologies and subsumed clauses, proofs

of efficiency are extracted from proofs of relative complete-

ness and require the assumption that Y generates simpler

before more complex refutations.

The preceding remarks have attempted to indicate

some of the more important relationships between the

efficiency of proof procedures and the efficiency of search

strategies. It is hoped that the distinction of inference

system from search strategy will help to resolve some of the

controversy concerning the use of 'complete' versus 'heuristic'

methods in theorem-proving [41]. More specifically the

development of efficient proof procedures can be served by

a division of labour between logical studies of inference

systems and studies of search strategies by the methods of

operations research and artificial intelligence. These

separate studies need to be co-ordinated by means of a
theory which seeks to relate properties of inference systems

and search strategies to properties of efficient proof

procedures.

We have assumed that the fundamental property

which needs to be required of proof procedures is

- 20 -

that the difficulties of formally generated first proofs

should tend toward those of informally obtained first

proofs. We shall argue that a useful set of sufficient

conditions for 6)= (f ,:) to approach this goal is that

(1) the complexities of simplest admissible

formal proofs should be related to the

complexities of informal proofs first

constructed for theorems,

(2) S should restrict as much as possible the

admissibility of both redundant derivations

and derivations irrelevant to a simplest

proof,

(3) Z should aim at generating simpler before

more complicated admissible proofs, and

(4) should generate derivations in a

selective order determined by intelligent

estimates of their relevance to a simplest

proof.

These four conditions have already been alluded

to in preceding discussions. Conditions (1), (2) and (3)

are further elaborated upon in section 0.2 and condition

(4) is discussed in 0.3.

0.2 Refinements and the Elimination of Redundant and
Irrelevant Inferences.

In this section we compare for efficiency procedures

- 21 -

('3'', g) and ('S , G) where -3"-f is obtained from S
either by imposing restrictions on the inference rules

of ' s or by omitting axioms from the axiom set S0 of S

Following Luekham [24], "' is said to be a refinement of

when S'* C S* where S'* and S* are the search spaces

determined by 15-11 and 1`r respectively. By individually

comparing for efficiency procedures (S 1 , E) and (?2,

with where S , and are refinements of

we can obtain indirect comparisons of efficiency for

(11, I-) and (S 2,). Furthermore, by extracting

from criteria for refinements, we obtain criteria for single

inference systems to admit extension to efficient proof

procedures. We shall argue that if L is a refinement

of and if 2 generates simpler before more complex

proofs then ("', ') is more efficient than (3", -) if
the simplest proof admissible for "S is also admissible for

is more efficient than if
admits simpler proofs than 31-1 without admitting inordin-

ately many redundant and irrelevant derivations not admitted

by

If ?'I is a refinement of ? ' then either j4-1

eliminates redundant derivations admissible for ?-or
(provided ''' does not eliminate all proofs of a theorem)

' eliminates derivations irrelevant to a proof of the

given theorem. The most obvious kind of redundancy

- 22 -

exists when a system radmits distinct derivations of the

same sentence C (or of variants C and C' when is a

resolution system). For resolution systems 1, another

kind of redundance exists when 5 admits both a derivation

of a clause 0 and a second derivation D' of a clause

C' which subsumes C. Other relationships between derivations

G) and G' can be attributed to redundancy. A precise

characterization of these relationships is not necessary for

present purposes. An irrelevant derivation is one which,

for reasons other than redundancy, is not necessary for the

construction of a proof. Redundant and irrelevant derivations

may be eliminated either by restrictions which prohibit

their generation or by deletion after generation. The

second method is related to the first because deletion

prchibits; the generation of derivations constructible from

deleted derivations.

The method of eliminating redundancies, which,as

we shall observe below, need not always contribute to

efficiency, is the principal method employed in this thesis

for studying the improvement of inference systems. We shall

argue that the potential improvement of eliminating

redundancies and irrelevancies is related not only to the

numbers of derivations eliminated but also to the complexity

of the simplest proofs retained. In this connexion it is

worth noting that systems which represent sentences as sets

- 23 -

of clauses omit redundancies caused in other systems by

explicit rules (or axioms) for double negation, for

commutativity, associativity and idempotency of conjunction

and disjunction, for renaming bound variables, vacuous

quantification ana for interchanging adjacent quantifiers

of the same type. These redundancies are omitted without

the expense of complicating proofs.

The use of explicit operations for factoring

clauses saves partial results obtained when attempting to

resolve clauses. The method of marked factoring (section 1.6)

eliminates without complicating derivations, redundancies

aliowd by the Zoos--Rebinson method [531. The method of

m-factoring (section 4.7) achieves similar results irhile

also providing an effective means for implementing merging

restrictions [2]. A restricted version of marked factoring

(nucleus clauses un.factored9 section 4.6) reduces further

redundancies with some attendant complication of derivations.

(It is interesting to note that this method sometimes

eliminates all refutations which lift ground refutations.)

The method of section 2.9 for the unique decomposition of

hyper-resolution clashes can be interpreted either as a

means for eliminating redundancies from P1-resolution or

as a method for implementing hyper-resolution while saving

intermediate results. Under neither of these interpretations

does this method complicate derivations.

-24-

For most resolution systems the retention of

tautologies only introduces redunclances and complicates

derivations (section 1.12). On the other hand, retention

of variants and subsumed clauses generates redundancy -

but sometimes simplifies derivations (section 1.11).

1'iinimality restrictions (section 1.13), which can be imposed

on a -restricted binary derivations (2.6) and on M-clash

derivations (2.7), both simplify deriv,tions and eliminate

many redundancies. M--clash restrictions complicate

derivations; additional complication is caused by the

t3+. -restrictions on M-clash derivations (2.7). Chapter 3

establishes an equivalence between a refinement of the

pararaodulation method for dealing with equality and the

hyper-resolution method using equality axioms. This

equivalence implies both equivalent numbers of redundant

and irrelevant derivations and also equivalent complexities

of proofs for the two systems. For both systems, initial

trivialization of inequalities (3.4) restricts redundancies

and retains simplest refutations.

Almost certainly the most significant contribution

to the elimination of redundant inferences has been the

Prawitz method for restricting the instantiation of matrix

clauses over the Herbrand universe [34]. This method, now

incorporated in other Herbrand procedures [351, [22] , [14)

(by means of the unification or matching algorithm). improves

-- 25 -

efficiency by eliminating redundancies without complicating

proofs. In the case of resolution systems, most general

unification eliminates redundancies by omitting infinitely

many ground derivations lifted by single general derivations.

The Prawitz method also eliminates irrelevant derivations in

a manner similar to that of the purity principle [39].

Clauses which cannot occur in proofs, because they contain

literals which cannot mate with other literals in the initial

set of clauses, are inhibited from generating irrelevant

derivations. (In the pre-Prawitz Gilmore method [10] such

clauses would not be distinguished from other clauses and

wo.ild potentially need to be ins tanbiated in all possible

ways over the Herbrand universe.) Methods similar to the

Prawitz method have been conjoctured but not verified for

the predicate calculus with equality [5], [28], [43], [38].

N-clash resolution eliminates both redundant and

irrelevant derivations. On the other hand, linear resolution

([23] and [24]) eliminates redundancies but no irrelevancies,

since, as shown by Loveland, for any clause C derivable by

unrestricted resolution there is a linear derivation 0'

of a clause C' which subsumes C. The linear derivation

6) ' is no more complicated than the derivation Q of C in

the sense that it contains no greater number of applications

of resolution. However Q ' can be muoh more complicated

than (D if complexity is measured by resolution level.

M-clash resolution eliminates irrelevancies because only

clauses false in the interpretation M can be derived by

the M-clash resolution rule. That M-clash xewolution

eliminates no irrelevant derivations other than those of

clauses true in :N is a consequence of the deduction

completeness theorem 2.5.1.

The elimination of redundant and irrelevant

derivations does not, by itself, guarantee efficient proof

procedures. Indeed it is even possible for a complete

inference system 1', which admits neither redundant nor

irrelevant derivations, to be incapable of extension to a

procedure (S ,
c

) which proves informally easy theorems

without great formal difficulty. Such an inference system

would admit proofs of only great formal complexity.

More generally if is a refinement of then (S ', 'Z.-)

may be less efficient than (SY, t?-) if 7'" 1 does not admit

the first proof obtained by C[,, which is admissible for S`.

Under the assumption that ,S generates simpler before more

complex proofs, (1' = (S` ' ,) is more efficient than

v'

s

= (',) (or no less efficient) when .$ ' admits the

implest proof admitted by (assuming also that the order

in which generates derivations admissible for S '
coincides with the order in which Z generates derivations

admissible for restricted to derivations admissible for j '). Under these assumptions, (j' generates the same first

- 27 --

proof 6D generated by 6) ; before generating 6), 6 generates
all the derivations generated by Of and those derivations

generated by 6' and not by P' are redundancies and

irrelevancies not admitted by S '. If generates more

complex before simpler proofs than (D ' may be more

efficient than (P even when ' eliminates simplest proofs

and very few other derivations. Such combinations of search

strategies and refinements yielding more efficient proof

procedures are pathological and do not seem to fit into any

comprehensive theory of efficient proof procedures. For

this and other reasons mentioned already in section 0.1,

we shall compare inference systems relative to the assumption

that they are incorporated in proof procedures with search

strategies which generate simpler before more complex proofs.

(S ', 7) can be more efficient than (S ,)

even when ' eliminates simplest proofs provided that '

eliminates sufficiently many redundancies and irrelevancies.

The more ?" eliminates unnecessary derivations the greater

s`'' may complicate simplest proofs while still improving

efficiency. Suppose for example that S ' is a refinement

of S and that Z. is a level saturation search strategy

for Sv and Suppose that, for a given initial set

of sentences S0, and T"' admit respectively d(n) and

d'(n) derivations of level less than or equal to n. Then,
d1(n)

for each n, ' d' (n) < d(n) and r(n) ^
dd (n) is the fraction of

- 28 -

derivations of level less than or equal to..n admitted by f
which are also admitted by Ir- t. If N and N' are the least

levels of proofs from SO admissible for 'S and T -t
respectively, then 6' is more, less or equally efficient

to 0 depending on whether d'(N') < d(N), dt(N') > d(N)

or d'(Nt) = d(N) (assuming for sim-,plicity, that £.. generates

all derivations of a given level before generating a proof

of that level). Thus (1 , Z) is more efficient than

(s, Z) if N = N' or if N' > N but T t omits sufficiently

many derivations for d'(N') < d(N). For classes of initial
sets of sentences S0, estimates of the function r (as a

function of n and S0) can sometimes be obtained by

comparing derivations admissible for rand 'f". Other

investigations can be made to estimate either d or d' and

bounds on the difference between N and N' (as a function of

S0 and of the theorem to be proved) can often be extracted

from completeness proofs for 1 t relative to Similar

studies can be done for other notions of complexity when a

is a saturation search by degree of complexity. The functions

d, d' and r and N' as a function of N vary widely with

various properties of initial sets S0 and of theorems provable

from S. For this reason calculations of these functions

may be impossible in all but either worst or best cases or

cases which can be considered typical for some class of

theorems.

_29-

Despite the great difficulties of obtaining, for

wide classes of theorems, Precise comparisons of the

potential efficiency of refinements, certain important

principles emerge quite clearly. If '3' ' refines

and Z generates simpler before more complex proofs, then

the greater the number of derivations eliminated and the

simpler the proofs admitted by 1311, the more efficient

is than (15-) . Both extended set of

support in resolution [55] and the employment of lemmas in

model elimination [22] extend inference systems, simplifying

proofs and introducing redundancies and irrelevancies. Both

excer_sions are motivated by the use of lex as and previously

proved theorems to increase the efficiency of proving

theorems in informal mathematics.

It has been suggested that the efficiency of proof

procedures can be improved by increasing the power of

inference systems [27], [44]. This notion can be

quantified by identifying the power of 3"` for a given

theorem with the degree of cozlpplexity of the simplest proof

admitted by Thus a system
'

is more powerful than

when the simplest proof admitted by is simpler than

the simplest proof admitted by 1" for the same theorem.

In particular T is never less powerful than if

extends f '. G8de1's results on lengths of proofs [11]

show that many proofs can be greatly simplified by applying

rules within a system of higher-order logic. Among

resolution systems, unrestricted resolution admits the

simplest proofs and is therefore most powerful, although

not necessarily uniquely so.

Just as i-efinomonts often ovor-complicate proofs,

extensions often introduce too any redundancies and irrel-

evancies. The problem of admitting too many derivations is

especially acute for higher-order logic and first-order

logic with axiom schemata. Gould's negative results [12]

show that there is no algorithm for eliminating in higher-

order logic the kind of irrelevancies eliminated by the

unification algorithm in first-order logic. , .xicm schemata

in first-order logic become axioms in second-order logic.

For this reason Gould's results are not very surprising since

extension of the unifi-G ation algorithm to higher-order logic

would imply very strong restrictions on the instantiation of

axiom schemata in first-order theories. Darlington's

f-matching method [5] provides just such an extension of the

unification algorithm to the restricted instantiation of

axiom schema. For the schema of substitutivity for equality

(which can already be restricted to a finite number of

instances), the completeness of f-matching is equivalent to

that of the paramodulation system conjectured to be complete

by Robinson and ITos [38] . For the axiom schema of induction

in number theory, f--matching may fail to provide instances

- 31

which are necessary to prove e,,Yen easy theorems.

The difficulties encountered by various attempts

to inhibit the generation of irrelevancies by logical

restrictions on inference systems suggests that a plateau

has been reached for improving efficiency by eliminating

irrelevant derivations within complete inference systems.

Further progress for improving efficii-ncy may be possible

by employing incomplete inference systems. This

possibility will be discussed in section 0.3. It should

be remarked first that at least two research programmes can

be formulated for increasing the efficiency of existing

proof procedures without sacrificing the completeness of

inference systems. The first programme involves the

simulation in search strategies of intelligent informal

methods for finding proofs. The second programme is that

of constructing refinements of inference systeL_s with the

explicit goal of oliasira-ting ^s many redundancies as possible

while still retaining simplest proofs. The first proposal

has already been discussed in the preceding section and will

be exr=dned further in section 0.3 in connexion with

discussions pertaining to the completeness of search

strategies. With regard to the second proposal, it should

be ro'narked that existing refinements of inference systems

(e.g. resolution) admit inordinately large numbers of

redundant derivations. Unlike irrelevancies, redundancies

32

can be recognized during the course of searching for proofs,

It might be hoped that these redundancies can be recognized

and eliminated before rather than after their generation.

It seems reasonable to extract, from criteria for

refinements and extensions, criteria for single inference

systems 5 to admit extension to efficient proof procedures

(T, T.). These criteria include requirements that 7-
admit simple proofs and few redundancies and irrelevancies.

For formal methods to compete with informal methods in

restricting the generation of redundant and irrelevant

inferences, it seems unlikely that first obtained formal

proofs can be much simpler than those first obtained by

informal methods. On the other hand, if formal

complexities are much greater than informal complexities

then formal difficulties will tend to be greater than

informal difficulties. For these reasons it seems

desirable that formal complexities of proofs should

approximate those of informally obtained first proofs

of the same theorem.

Ye have already remarked that informally obtained

first proofs of theorems are often more complex than later

proofs. For an ideally efficient proof procedure (, .),

assuming that Z is complete for r and generates simplest

admissible proofs before more complex proofs, the preceding

remarks imply that the first proof generated by (ir, '

33

is likely to be tore complex than the simplest proof

theoretically possible for a given theorem. This not only

suggests the possibility of improving efficiency by the

appropriate choice of refinements for proving given theorens

but also suggests the merit of methods for obtaining simplest

proofs of theorems after generating the more conplex and more

efficiently obtained first proofs admissible for refinetents.

A simple program for the simplification of complex' proofs

can be outlined for resolution inference systems:

Suppose that is a refinement of the unrestricted

resolution system f . Suppose that 7., generates simpler

before more complex refutations and that 6) and (' are

the simplest refutations, of an unsatisfiable set of

clauses SO, admissible for T' and'' respectively. Assume

that (-31-'
1,) is more efficient than (S , Z) for

refuting S0 and tnat ® ' is the first obtained refutation

of S0. Zfiith few exceptions the following method will
construct 0 (or an equivalently simple refutation of s0)

from 0', generally with much less difficulty than would

be involved in obtaining J directly by (T-, Z). Although

' may not lift a ground refutation, it can be verified

that it is easy to construct both a ground refutation

ao and a coxitraction 6)
1

of 0' which is a refutation

of S0 and lifts 0 00 (4 0 and 01 can be constructed

simultaneously from () ' by applying methods similar to

- 3 4 -

those applied to prove the contraction theorem 1.10.2 and

to apply the m:irilmality restriction (section 1,13)- In

the notation of 1.13, Do The set Sot of clauses

which occur at tips of 6o constitute a truth-functionally un-

satisfiable set of instances of clauses in So. E. applied

to j (S0') will generate a simplest refutation "2 of S0'.

02 can be lifted to obtain a refutation 1)3 of So.

Generally)3 will be a simpler proof than 6)' and either

will be identical to 0 or will be of a complexity equivalent

to that of 0 . Similar methods can be profitably applied

to the simplification of proofs in more general contexts.

0.3 Completeness of Proof Procedures.

Before examining relationships between completeness

and efficiency it is necessary to recall that both complete-

ness and efficiency are evaluated relative to the set of

sentences G. within which a proof procedure (5) is expected

to prove theorems. This explicit identification of the

set c is necessary in order to avoid, when undesired,

evaluation relative either to the possibly larger set G.

of all sentences or alternatively to the set G°, the

largest set for which is complete. For any proof

procedure 61 such a set ° always exists and may in

extreme cases equal either 0 or more likely

may be properly contained in C"G, in which case LP is

potentially required to prove theorems in - G ° which

-35-

are unprovable for (Q ; Qj'° may be identical to C ;

or ($ may be properly contained in G°, in which case

although theoretically capable of proving theorems

in ° - , is not required to do so, possibly becuse

Q is known to be inefficient for theorems in & -
or because sentences in - Q5 do not arise in some

princi l intended application if P . In any case, for a

given proof procedure the set (&
0

need not in general be

effectively recognizable (i.e. recursive). In contrast it

is important to require that sentences inG be distinguished

from sentences in before a proof is attempted by

In particular it is not adequate to specify that 6) is

expected to prove, for instance, only easy c,r only difficult

theorems, if no effective and efficient recognition algorithm

exists and is employed for distinguishing such possible

theorems. Without further qualification, i.;, will be

implicitly assumed in the remainder of this section that

proof procedures P are evaluated for completeness

(and efficiency) relative to the set (25 for which 63is

expected to prove theorems. It will be assumed that

sentences in
'
- Q e7 effectively and efficiently

distinguishable from sentences in Q' . Because of

these assumptions, decision procedures for decidable

subsets of * are evaluated as complete wIen they are

intended to prove theorems in G and as incomplete if they
are expected to prove theorems in ('. For the sane reasons,

procedures 60 complete for Q5 * will be investigated for

_36-

relationships between completeness and efficiency, not

necessarily relative toGy , but relative to the set Cr

to which e is expected to be applied.

All proof procedures, complete or incomplete, are

limited in practice by an upper bound on the amount of

effort available for generating a proof of a given

theorem. Failure to obtain a proof by a complete

procedure 6) within such finite limitations implies that

the alleged theorem either is not valid or is valid

but too difficult to be proved with the lin:ted amount of

effort available. Similar failure by an incomplete 6)

implies, as a third possibility, that the alleged theorem

is valid but unprovable by (2 even with unlimited effort.

For all practical purposes it is only this third possibility

which distingu;_shes incomplete from complete proof procedures.

(Indeed the existence of this possibility provides an oper-

ational definition of incompleteness which coincides in

extension with the definition of the first paragraph of

this section. We shall attempt to determine whether the

existence of this third possibility justifies evaluating

complete procedures as always superior to incomplete

procedures.

Of all proof procedures we require only that formal

difficulties tend toward the informal difficulties of first

37

proving theorems. (The degree to which a proof procedure

approaches this goal can be evaluated independently of its

completeness or incompleteness. Indeed it is wholly upon

this basis that we intend to base our evaluation of the

significance of incompleteness for efficiency.) Thus when

a best (i.e. most efficient) proof procedure fails to obtain

a proof of a given theorem within given limitations on the

amount of effort available it can be inferred that the

theorem is too difficult to be proved by any good proof

procedure within the came limitations. It is important to

notice that in this sense an incomplete procedure Of can

be superior to,a complete procedure ?) . 0 may fail to

prove, even with considerable but limited effort, theorems

which are easy to prove informally with less difficulty, in

particular, than that unsuccessfully expended by 6. In

contrast, 9 f, because of its incompleteness, may be incapable

of proving only inforna'.ly difficult theorems which are in

any case too difficult to be proved by any efficient proof

procedure within the bounds on effort available. Thus what

matters for efficiency is not necessarily the frequency with

which an incomplete procedure QI is expected to prove

theorems theoretically unprovable for r - but, more
significantly,- the frequency with which is expected

(and unable) to prove theorems informally provable with less

effort than that unsuccessfully expended by (Q r. More generally

a complete or incomplete procedure fails to be satisfactory

only when it fails to prove with a given bounded amount of

effort a theorem which is informally provable with comparable

effort.

The longer that inference systems and proof procedures

(such as those of [5], [28], [38] and [43]) are conjectured,

but not proved, to be complete, the less significant for

efficiency is the possibility of their incompleteness. The

increased suitability of these systems and pro^.edures is due

not only to the increased likelihood of their completeness

but pore importantly to the increased likelihood that in the

case of incompleteness, only informally- difficult theorems are

formally unprovable. Since successive attempts to disprove

completeness will tend to eliminate simpler before more complex

counter-exanple.., continued failure of these attempts increases

the likelihood that, in the event cf incompleteness, only

complex counter--examples exist. Increasingly complex counter-

examples correspond to increasingly more difficult theorems,

and therefore continuing failure to disprove completeness

decreases the probability that easy theorems are unprovable.-

`t'his decreased probability increases, in turn, the suitability

of the given inference systems and proof procedures for automatic

theorem-proving. It is an in'-eresting possibi_licy that more

information may be available about the suitability of proof

procedures which are conjectured but not proved to be

complete than is available for proof procedures which are

definitely known to be either complete or incomplete. None

the less we shall argue that proof procedures = (1 , .)
employing complete ?-are often at an advantage compared to

procedures employing incomplete inference systems. This

advantage is that completeness proofs for inference systems

5 often yield information relevant to the efficiency of

procedures (?'P),namely that complexities of simplest

admissible proofs relate to the complexities of informally

obtained first proofs.

It has already been noted that incomplete procedures,

because of their incompleteness, are able to eliminate more

irrelevancies than can be eliminated by complete procedtireso

Almost certainly it is only this possibility of eliminating

greater nunberq of irrelevant derivations which can account

for an absolute preference for incomplete proof procedures.

Indeed this reason accounts for the fact that decision and

semi-decision procedures, complete for sets of sentences

Gr C C x but incomplete for c *, can be more efficient

than procedures complete for * when they are applied to
r

proving theorems in L`). In particular the incompleteness

of resolation procedures, for deriving logical consequences

from sets of clauses, is a property which cont---ibutes to

their efficiency for obtaining refutations of unsatisfiable

sets of clauses. (Bounds on the incompleteness of

- 4 0 -

resolution systems, relevant to efficiency, are established

by Theorem 2.5.1.) The possible advantages of incomplete

proof procedures are apparent when these procedures are

applied to obtaining proofs of theorems which they are able

to prove. The disadvantages of incomplete procedures arise

when they are applied to proving theorems which they are

incapable of proving.

In genergl it is to the r1isadvantage of incomplete

proof procedures that usually little or no information is

available concerning the extent or character of their

incompleteness. In particular no such information has been

reported for the interactive theorem-proving programs of the

Applied Logic Corporation [14]. Certainly what should be

required of incomplete procedures is that only very few

if any easy theorems should be unprovable. Norton notes

that this requirement fails to be satisfied by his incomplete

proof procedure for proving theorems in group theory [31].

We have already remarked, in the preceding section,

that completeness proofs for refinements 7"t of inference

systems j often provide information about the comparative
efficiency of proof procedures (, L..) and ('? I , z) .
This information is easiest to obtain when completeness

proofs for relative to ? proceed by transforming
proofs 0 admissible for T into proofs 6) t admissible

for ''Sy Comparison of the complexities of (1} and 0 '

- 41

can be applied, by the method outlined in section 0.2,

comparison of the efficiencies of and (21. Similar

but more limited information concerning efficiency can

sometimes be extracted from completeness proofs (for inference

systems) which proceed directly by semantic arguments. In

particular the application to completeness proofs of semantic

tree construction exhibits a relationship between the

complexity of resolution proofs and the complexity of a

certain kind of semantic argument for establishing the sane

theorem. More generally, completeness proofs for inference

systems which can be interpreted as employing rules for

Herbrand instantiation of matrix clauses (e.g. Gilmore [i0],

Prawitz [34] , [351, and Lcveland [22] and Robinson resolution

systems) indicate a relationship between complexities of

simplest formal proofs and notions of complexity, invariant

for these systems, based upon the number and truth-functional

complexity of the fewest ground instances of matrix clauses

necessary to reduce the proof of a given theorem to the

proof of a corresponding theorem in propositional logic.

That complexities of simplest proofs correspond closely to

complexities of informally obtained proofs does not by

itself imply that formal difficulties correspond to the

informal difficulties of obtaining first proofs of theorems.

For this stronger correspondence, it is necessary in addition

that the inference system S admits few redundant and

-. 42 -

irrelevant derivations while the search strategy .L finds

simpler before more complex proofs, generating derivations

in a discriminating order of relevance to a simplest proof.

It seems that the problem of investigating inference systems

'C for redundant and irrelevant derivations is no more

difficult for incomplete than it is for complete
.r

0

In contrast, the problem of relating formal to informal

complexities of first proofs seems to be an easier one for

complete. We shall argue that complete search strat-

egies G- are likely to be more suitable thah incomplete

for application to inference systoms in efficient

proof procedures.

We recall that proof procedures are analysed

as consisting of inference systems . and search strategies

the logical restActions of 'r are incorporated

in '..- , heuristic restrictions are incorporated in and

restrictions which are ambiguously logical or heuristic

are treated as logical restrictions and incorporated in

Relative to these conventions, we argue the case for

complete search strategies L against that for incomplete

Since arguments for incomplete seem to be based

primarily on the paradigm of intelligent human behaviour

as applied to finding proofs of theorems, we li.nit our

arguments to those based on this same paradigm. ?Ie note

that the case for complete search strategies can also be

-- 43 -

be interpreted more generally as one for complete proof

procedures.

Characteristic of intelligent informal theorem-

proving is the high degree of selectivity employed in

exploring possibilities for proving theorems. This

selectivity seems to suggest that informal search strategies

so restrict the generation of derivations that they must

almost certainly be incomplete. Contradicting this

conclusion is the unlikelihood that an intelligent theorem-

prover would completely eliminate, on purely heuristic

grounds, a logically possible subproof of a given alleged

theorem. This unlikelihood suggests that informal search

strategies (and also proof procedures) are complete. The

apparent contradiction can be reconciled by interpreting

the selectivity of informal search strategies positively,

as employing highly discriminating but not incomplete

heuristics for ordering logically possible subproofs with

respect to their expected relevance to a desired simplest

proof, instead of negatively, as eliminating beyond

reconsideration possible but unlikely subproofs of the

alleged theorem. The heuristic for deleting clauses,

which contain function symbols nested to a degree exceeding

a given fixed bound [1], [53], is an application of the

negative interpretation of selectivity. A corresponding

application of the positive interpretation is a heuristic

.. 44

which would give preference among clauses of otherwise

equal merit, to clauses containing less function nesting

over clauses containing greater nesting, without completely

eliminating the latter clauses. (It is interesting to

note that implementation of he positively interpreted

heuristic improves the efficiency of diagonal search -

assuming that complexity of derivations ',. is a monotonic

incregsing function of the number of symbols occurring in

.) Similarly, search strategies employing only the

unit section of unit preference search [53] apply the

negative interpretation of selectivity, whereas diagonal

search strategies employing expected length of clause as

a heuristic function (section 4.3) apply a positive

interpretation. In general complete search strategies,

employing positive criteria for discriminating between

possible subproofs, simulate intelligent search methods

more faithfully than incomplete strategies, employing

negative criteria for rejecting candidate subproofs.

Assuming that efficient search strategies are essential

for the efficiency of proof procedures and that simulation

of intelligent informal methods is indispensable for the

efficiency of search strategies, it follows that complete

search strategies are gore likely than incomplete strategies

to serve the goals of efficient automatic theorem-proving.

-45-

0.4 Conclusion

In this chapter we have investigated various

notions and assumptions relevant to the efficiency of

automatic proof procedures. In particular, we have argued

for the utility of formulating distinctions between inference

system, search strategy and proof procedure, distinctions

between complexity and difficulty and assumptions relating

formal and informal methods of proof. We have attempted

to indicate that these distinctions and assumptions can be

usefully applied within a theory of efficiency to

(1) outline formal methods of evaluating refine-

ments, extensions and single proof procedures

for efficiency,

(2) reconcile apparently conflicting intuitions

regarding efficiency (e.g. concerning complete

vs. heuristic methods),

(3) distinguish intuitions on the basis of their

being compatible with, incompatible with or

logically implied by the theory and

(4) suggest practicable programmes of research for

improving the efficiency of proof procedures.

It is hoped that additional evidence for the utility

of this theory will be provided by the investigations of

chapters 1-4.

-46,.
Chapter 1

This chapter is concerned with the syntax of resolution

systems. Sections 1.1 - 1.5 examine the syntax of expressions,

substitutions, unification, clash resolution and clash

restriction. In section 1.6 factoring and resolution of

factors are introduced as methods for improving the efficiency

of implementing resolution rules. Derivations are treated as

labelled trees (section 1.8) and useful properties of trees

are stated in 1.7. In section 1.9 the trace of a search

strategy is defined and is used in turn to define the efficiency

of proof procedures and the completeness of deletion rules.

These notions are applied in 1.11 and 1.12 to an investigation

of the completeness and efficiency of rules for deleting

subsumed clauses and tautologies.

The contraction theorem (section 1.10) isolates and

formalizes a useful method for constructing anu transforming

derivations. It is applied in chapter 2 to construct derivations

from semantic trees and. in chapter 3 to permute hyper-resolution

derivations. The contraction theorem generalises the lifting

lemma and indicates how deletion of subsumed clauses can

simplify derivations.

In section 1.13 a strong restriction on derivations is

incorporated in the minimality condition. The preservation of

minimality conditions under contractions implies that minimality

is compatible with deletion of subsumed clauses. This same

property is used in chapter 2 to prove the existence of minimal

C)-.-restricted binary proofs and minimal M-clash proofs.

-47-

[cessions.

We assume familiarity with the basic concepts, of

resolution theory as can be found, for instance, in

Robinson's review article [42] . The following definitions

are intended therefore primarily to establish the terminology

and notation used in the sequel.

Atomic formulae A are referred to as atoms. Literals

L are atoms A or their negations A; in the first case L is

said to be,ositive, in the second case negative. If L is a

literal then by IL! we denote the atom A such that L = A or

L = A, If L is negative we identify L with the atom ILI .

A clause C is a set of literals. If C = { L1 , . ,L;
is a set of literals then by C we denote, as in [3] , the set

f } . It is convenient to follow the convention of

[2] lettin,; U denote disjoint union. Thus CUD is defined

only when C(D and then GUD = CUD. If a clause C contains

no element, then we denote C by Q and C is called the null

clause. C is a tautolo if for some literal L, both L,L E C.

A clause C is positive (negative) if all its literals are positive

(negative), otherwise C is non-2ositive (non-negative). We

recall that a clause is interpreted as the universal closure of

the disjunction of its literals.

Function letters may have no argument places, in which

case they are individual constants. An ex xession is a term,

literal, clause or set of clauses. If an expression contains no

variables then it is called a ground expression.

-°48..

We note that the representation of sentences by sets of

cl.auses is an important factor contributing to the efficiency

of resolution systems. Rules for commutativity, associativity,

and idempotenoy of disjunction and conjunction, for

interchanging adjacent quantifiers of similar kind and for

deleting vacuous quantifiers are all unnecessary* The

elimination of these rules contributes to efficiency by

shortening derivations and by reducing the number of

sentences derivable from a given set of sentences.

1,2 Substitutions.

A substitution o- is a set of substitution coaonents

t./ ,x where t, is a term and x. is a variable (as in [39] i 71 1

t is not xi) . If a- = { t1,x1 , ..., tJx then the variables

xi and te:r'ms ti (for 1 < i < n) are called respectively

the variables and terms of c3°° a If the terms of o

are ground terms then v- is called a round substitutions

Fo:.' any expression X and substitution cr , the e cpressior

x a- is well-defined and is the result of applying a- to X.

Xa- is called an instalce of X. If C and D are clauses then

C subsumes D, if C a° C D for some substitution c-%

The following properties of substitutions are well known:

(1) Given substitutions o-,i and m-2 their

.. 49-

composition 0- a° 2) is always well-defined and is

such that X (a 1 02) = (X
0- 1

2
(2) Composition of substitutions is associative, i.e.

((a,- c"_2) a"3 _ (o - (a°'2 0-3)) for all aV 2 , 3,
We may therefore omit parentheses for compounded

substitutions in the usual way.

(3) The emp substitution 6 _ 0 is an identity for

composition, i.ee cr = co'- = fir- for all a" .

(4) X a- = X if the variables of a do not occur in X.

If C1 and C2 are clauses and C10- =
02

, C2 O 2_
C1

for some a-,q and o-2 then C1 and C2 are variants (variants

differ only by a systematic renaming of variables). Under the

usual interpretation of clauses variants are logically

equivalent. A set of clauses S= {C1,...$ Cn} is

standardised if no twa distinct C. and C share common

variables. Every set of clauses S is logically equivalent

to a standardised set S' where S' may be obtained from S by

appropriately replacing clauses in S by variants. Resolution

conventions for standardising sets of clauses eliminate the

usual rules for renaming bound variables.

1j Unification.

A set of expressions E is unifiable if Eo- is a

singleton for some o- ; a- is called a unifier of E. A

family _ { E1,..,En } of sets of expressions is

sipultaneousj unifiable, if Eia- is a singleton for each i

- 50

and same cY- o A most eneral unifier (m.goue) of a set of

expressions E is a unifier 9 of E such that if c°- also

unifies E then (Y- = eA for some /\ o If E is unifiable then

such an m.g.uo e of E exists; moreover we m 4y .ay insist, as

we do in the sequel, that the variables of 0 and the

variables occurring in terms of S all occur In E

(see. [39]) ® Similarly a most general simultaneous

unifier (m.g.s.u.) of a family S is a simultaneous unifier 0

of S such that if a° simultaneously unifies E then e°-

4 A for some /(. If F, is simultaneously unifiable then such

an mag.saue 4 exists and may be restricted as for the case

of :a.gouas above. Notice that e is an r.ges.us of 0
{ E I if any only if e is an mog.uo of E. It follows

that we may restrict attention when desirable to statements

regarding families s and their simultaneous unifiers and

m,g.souos . We shall often refer to simultaneous unifiers

more simply as unifiers,

Algorithms for obtaining m.g.u.s and mDg,,,c.us of

unifiable families are given in [39] and [43] . The

refinement theorem below and its corollaries formalise many of

the intuitive properties expected of m.g.sou.s Among the

implications of corollaries 11.3.3 and 1.2.4 is that the

problem of computing arbitrary m.g.s.u.s can be reduced, to

that of consecutively finding m.g.u.s of sets containing

just two expressions. Corollary 1936 is used as a lemma in

verifying that resolvents of clashes can be obtained as

-51

resolvents of factors.

Let . and e l be families of sets of eirpres ions.

is a refinement of . if for every Et E t there is

an E E ?-I such that E' Ee Notice that if is unifiable

then so is 'p,! (e.g. ary unifier of 6 unifies 2t)o

Lemma 1 ,3.1. Given E unifiable and e_t a refinement of £ ,

let
e1

and ®2 be m.g.s.u.s of t and C,e respectively

then 0102 is an m.g.scuo of 0 .

Proof. e 2 unifies Z since e 2 unifies e

and (01) 2 = e 1 e
2

If Cr- uni.fi,esE ther

c° unifies t and o- = 01 1 for some A 1. Moreover A

unifies e, e since (' Q,) A 1 = C, Cr- So /
1

=

e2 ' 2 for some 2. But then a- = e 1 2 A 2) _

(e 1 e 2) A
2

Theorem 1 .V?. (Refinement Theorem). Let be unifiable

an3 lei: be refinements of . Then

e,1.$.©n8 is an m.g.s.uo of e where

9i is an m.g.s.u of eo ..o 0 (eo= E.)p

and e is an m.g.s.uo of tee ... e n

Proof. It suffices to show that for all kg 0 < k C n ,

& 0... 6 kot is an m.g.s.ua of E- where

e t is an m.g.s.ue of 0 .<. 8k

For k = 0 this is trivial. Assume by way of induction hypothe-

sis that the above is true for some k < no By the preceding

Lemma 1.3.1' since Ok+1 ©0 ... ek is a refinement of

.-52-

F' 0 ... 0 k s we have is hat

0 k+1gr: is an mog.sou. of p .. ek where

(Pt is an mogosouo of e90000 0k+1 .

Thus letting ak+.,O4° be the m.g.s©uo e t of the induction

hpothesi&9

Q , . n Vk+1
e" is an m, g a s au o of where

e'p is an mogos.uo of .9o0. GkGk+'

Corollary 1.,'. Let F', { E,,ro.0EnI be unifiable.

Then e 1 9.. 0 is an m.g s ou e of where e i is an m.g.uo

of E
1 . e0 ..oe1.-1 (9a _ E).

Proof. Let i - { Ei{ Then & is a

refinement of and e i is an m.gos.um of i ®C e i-1 0

So 61000 &n9t is an .og.s.uo of where er is an mogsou.

of 1?01 0 0 a
O n But each E is a singleton, so

E e
I

o .. 9 is unified and 9 t may be taken to be E. .

C orollary 1 . . . Let E { Xl, .069Xn } 'be unif.'iable

where X1 1 Q o c sXn
are express ions. Then

e2.. Qn is an msgu. of E where

i is an m.g.uo of { x19Xi{ 9I .rao e, i-1

Proof. i = { { X1 . Xi { } is a refinement of

{E{ for 2 <i <n, So

e 2.. &n &I is an m.g.su. of where

e t is an m. g a s .u. of ',,. a 2. 00 fin.

But e2..o e is already unified, so we may let
9a o

Carollax 1 ri j. Bets 6, be a unifiable family and let

be refinements of which share no variables.

Then

e 1.00 ®n 9 1 is an m.g.s.u. of 6, where

G .is an mag.souz o,,Fl i and

is an meg.souo of e'O1... e

Proofo It suffices to show that

E 3 = &i Go ... Q
im ,

where 6C = F

But since, for i J. and share no variables

Oi = 6_ e j
Note that corollary 1,,,3.3 is essentially the simultaneous

unification theorem of Andrews' [2] and that Hart's

Theorem [i5] is essentially Corollary 1.3.3 stated for

n.=2.

1.4 Clashes

A standardised set of clauses C= }A1 a O.-fin= B}

is a clash if for '1 I <
A. = E'1 U ACis Bi

o 0 0

B F.t U ®.. U Fn U BQ P. y 0 and

F
U 11' "PEn U Fn } is unifiable with

m.g.s.ua e .

The clause

C = (k1U...J "On
U BC) 9

is the resolvent of (f . The clauses in C are the parents of

Co B is called the nucleus and the clauses A. are called the

satellites of (2, . The sets of literals Ei in
1''i

and.

®54_.

in B are called the literals reso?vpd upon in 1V...U
Fn

Literals L e Ei and K E P. are said to mate in C
& is called an m.g.s.u. of C G If n = 1 then the

distinction between the nucleus and satellite of C is
ambiguous and C and its resolvent C are said to be binary.
Note that e may contain ariants of the same clause.

The definition of clash given above coincides with

Brown's definition [3] and differs from the definition

of latent clash given by Robinson in [42]

1.5 Clash Restriction.

Robinson includes in the definition of latent clash

restrictions similar to the restriction below. This

restriction is not included in the definition of clash above

since in section 3.3 we invos':igato the completeness of a

resolution rule for clashes which are not necessarily

restricted.

Let e= { E U D1. ,...,F U D be a clash

with m.g.s.u. 4 where E. is the non-empty set of literals in

Ei U Di. resolved upon in . Then C= (1)
1
U...U Dm) @ is

vhe resolvent of `.'-,. . 6. is r'r. stricted if
L E Eiei implies L A C.

The motivation for introducing the notion of clash restriction

is twofold

(1) If C is restricted then the resolvent C of e, can

be obtained from e by a sequence of binary

resolutions.

(2) The sequence of binary re s olvents of (1) contains

no tautologies if neither C nor any of its parents

in C`° is a tautology,

If C is not restricted then either (1) or (2) may fail to

hold,. Fcr example if JA 1,1;2 s B) where 111= { L1 , L2}

A2= { L2 , L,1 } and B = { r, A-) then C --B cannot

be obtained from e by any sequence of binary resolutions.

If C _ 1.4
-i$A28

B} where Al = { L1,L2 } , A2 =

{ L2,L1 } and B ={11,12} then C = A1=A2 can be obtained

from C by a sequence of binary resolutions, but not without

inia oducint; tautologous resolvents.

The importance of (1) and (2) stems from the desirability

of replacing clashes by sequences of binary resolutions. This

point is taken up again in sections 2.8 and 2.9.

1.6 Factoringo

It is often convenient to regard as two consecutive

operations the single operation of resolving a clash C:

first each clause in 0 is replaced by a factor and then the

resulting set of factors c2t is resolved in such a way as to

obtain the resolvent C of e . The principal motivation

for considering factoring is to increase bhe efficiency of

searching for refutations.

Several notions of factoring are possible and are

studied in greater detail :.n Chapter 4. The following

definitions are sufficiently general for present purposes and

are equivalent, by the refinement theorem and its corollaries,

to the definitions given by T7os and Robinson in [53] .

If C = C1o .4JC is a clause and 8= { C1,...,Ci } ,

i n9 then Fi is called a Xartition of C and a complete

artition of C if i = n (i.ee if C = V,e,) a Let sbe a

unifiable partition of G with m.g.souo A then C e is a factor

of Co Resolution of factors is defined as for clauses in

general with the restriction however that the sets of literals

Ei and F. resolved upon (in the notation of the definition

&i.ven in section 1 .4.) are singletons. In other words a

standardised set of factors (1= { A1, o o.,An,B } is a clash

if for 1 < i < n

A1= { Li} V' Abi,

B = { K1, .. o,Kn} U B 0 and

{L1 ;,n-Kn} } is unifiable.

Then C = (A01 U. &j On V B0)6 is the re s olvent of 0 where

e is an m.g.s.ut of c .

The following more restrictive notion of factoring is

equivalent to that introduced by Hayes and Kowalski

in [17] . Let C be a clause and lot {C1,...,Cml

be a unifiable partition of C with m.g.s.u. e . The pair

D = (u (Fe), CO) is called a marked factor of Co The

setU (b)) is called the set of distinguished literals

of D. It will usually be the case that we identify the

marked factor D with its second element C4 A marked

factor cannot be factored. Resolution of a set Cof marked

factors is defined only for the case where the literals

resolved upon in C are all and only the distinguished
literals of factors in (a . A marked factor is a

satellite factor, if its set of distinguished literals is a

singleton. Thus satellites of a clash whose elements are

marked factors are satellite factors. 11 marked factor

(tJ(E e), C e) is an f or (idem-factor) of a clause C

if & is already unified (i.e. if 4 = E andU(P,) 0 (C).

If a clause C contains n distinct literals then it has 2n

distinct i-factors and n distinct satellite i-factors.

The following theorem justifies replacing the operation of

clash resolution by the two operations of generating factors and

of resolving clashes of factors.

Theorem '6.' o Let {.e`1,99,An,BJ be a clash with

resolvent C where for t C i< n
.

= Ei A 9 Ei O P

0 .
L= F1U...FnU B C, Fi 4 O F

EUF9,EnU F and

C = (L0JUUA.Cn U B0)e where & is an m.g.s.u. of ,

then ' 9 a , ,l 1$..., 'i' n., B y } is a clash of marled Factors

with reso] ent C where for 1 i < n

o r
B' = ((FU..0UFn) 8n+1 , B e

'n+1 F1 t...,T+'nJ and

6j is an m.g.s.u* of for 1 C. j < n + 1.

(ai' is restricted if e/ is.
Proof. Because e is standexdised all of the IZ, , j
j < n + 1, are refiner..ents of F which share no variables,

By Corollary 1 o3 5 of the refinement theorem the m.g.s.u.,

of e, may be taken to be e,i o.. n6' where et is an

m. go s.u. of gel ... a n+1

For 1 i < n, let

Li} = Ei@i { Ki} = Fien+I, a` d

{ {L1, { Ln,Kn} }

Then 09
,I ... ®n and & t is an m. g. s eu. of ' .

t1
Therefore et is a clash and its resolvent is

C _ (AQ1 ©1 U ... U 1'.
on

p U Bp a n+1) at

(j.01 e
1

000 g n+l
Uea U AOn eI .0 Vn+1 U B0&1,ue 9 n+1}Q t

(lc U o.o U ACn U B01) e I ... e n+i e f t

=C

Suppose that C is restricted and that C' is not.

Then for some L' resolved upon in e, Lt 8' E C. But L' =

Li or L' = K. for some i. Therefore for some L resolved

upon in (3a L' = L e j = L e 1... a n+1 for some j, 1 < j C n+1 ,

and L e = L19? e C. It follows that C is not

restricted, contrary to the assumption.

The refinement theorem and its corollaries suggest

various ways of computing an m.g.scus e of a clash a.
In particular the computation of 6 can be reduced first to

the canputation of the m.g.s .u.s a i , 0
.O rf G n+i and e'

of the theorem above. Thia particular reduction is an

attractive one because each e
i

can be computed independently.

It does not seem unreasonable to assume therefore that the

effort involved in resolving a clash C is equal to the

effort involved in generating and resolving the corresponding

set of marked factors (a4. In searching for refutations it
is usual for variants of the same clause to occur in several

different clashes. By storing the factors generated in

resolving a plash it is not necessary to recompute them when

they occur in other clashes. Thus by a suitable implementa-

tion of factoring it is possible both to simplify the

programming ana to increase the efficiency of clash

resolution.

l.7 Trees.

J tree is a pair (Ts) where T is a non-empty set of

elements called nodes and s is a function s T -+ T such

that:

(1) s-1(N) is finite for all N c T (ioe.(T, s) is

finitely bra .ching&)

(2) s (N0) = N0 for exactly one element N0 e T

called the root of (T, s) and denoted by r(T).

(3) Define s0(N)=N and sn+l(N)_ (,n
(N)),, Then

for all N e T there is an n > 0 such that

n(s N) = r (T). (i.e. well-foundedness: if X h 0

is a subset of T then there exists an N e X

such that N = r(T) or s(N) A X).

(I+) s(N) = N if and only if n = 0 or N = r (T)

(i.e. T contains no loops).

If N E T and s-1(N) = 0 then N is a jiR of (T.,

otherwise N is an interior node of (T,s). when, as is usually

the case, there is no possibility of confusion we supress

reference to the function s and refer to T itself as though it
were the tree (T,s). It is sometimes convenient to think of

trees as growing upwards* Thus r(T) lies above no nodes in T

and tips of T lie below no nodes in T.

A branch of a tree T is a set 6 C T such that

(1) r(T) e e
(2) N E 6 implies s(N) e 5 and

(3) N E 03 implies s-1(N) 0 j contains at most one

element.

A branch is complete if
(3') N E 8 implies s-1 (r) (1 cb contains exactly

one element unless s-1(N)= O .

Notice that any node N E T determines a branch 0j of T,

b = { sn(N) n=4,1, ... } Every branch of T contains

at most one tip.

Given a tree T and node N E T let TN be `he smallest

subset of T such that

(1) N E TN and

(2) N' E TN implies that s-1 (N') C TNo

Thus TN consists of the node N together with all nodes of T

lying above N. TAT has a natural interpretation as a subtree,

(TN,s') of T where s'(N)=kr and s'(N')=s(N') for N' A N

TN is called the subtree of T rooted in N. Notice that

T r(T)
Given a tree T a cut through T is a non-empty set X C. T

such that X f7 t'3 is a singleton for every complete branch

C T 9
i.e. X contains exactly one node from every

complete branch 63 of T. If X is a out through T

then X determines a subiee (T/X, s') where T/X= { sn(N)

N e X , n=1,2,.., } and s' is the restriction of

s to T/X. Note the following r operties of cuts.

1 . .1 . If X= { r(T) { then X is a out and T/X = r(T)

1.7.2. If T is finite and X= { N:NeT and s'(N)=O }

then X is a out and T/X = T

1q . . X is the set of tips of T/X.

1 (Kt r ig's Lemma)* If X is a cut through T then

T/X is finite.
Proof: Each complete branch Q) in T/X is

finite since each such 63 contains a tip in T/X,

i.e* the unique element of 06 (X Suppose

T/X is infinite then we can construct an

infinite complete branch Ujo of T/X as

follows:

r (T/X) = r(T) e 43 G. If N e 630 ;then

the subtree of T/X rooted in N is infinite.

Since s-1 (N) is finite the subtree of T/X

rooted in some Nt E s^1 (N) is infinite.

Let N' E 10 . Then Go is infinite and
V-DO

contains no tip.

1 . . If X is a cut through T and X { r(T) I then

s-11(N) C X for some N e T.

Proof: Suppose for every N e T there is an

N' E s-1 (N) such that N' E X. Then construct

a complete branch OjQ of T such that 0C n X

as follows: r(T) E VO. If N E 63 and

N' E s-1 (N)$ Nt , X. then N' E G 0. Then

x n gQ = $ and therefore X is not a out through

To

1.8 Derivations,

Let T be a tree and c a function defined on the nodes of

T having clauses as values. For X C T define c(X)

{ c(N) N e X
}

A pair 6, = (T,,c) is a

derivation relative to given logically valid inference rules,

if for all interior N e T, c(N) can be obtained from

c(s-1(N)) by a single application of one of the given inference

rules. If X is the set of tips of T, if c(X) C S and if
C=c(r(T)) then 6) is a derivation of

then (D is a rePatation of S

from S. If C = Q C

We also say that 0) is a

3erivation from S (or refutation of S) when 0 is a derivation

from a set St (refutation of S') and S' consists of variants

of clauses in S. (This convention is necessitated by the

decision to consider as clashes only standardised sets of

clauses). If X is a cut through T and c(X) C S then Q)'

(T/X,c'), where c' is c restricted to T/X, is a derivation

from S of C =c(r(T))=c'(r(T/X)) and S logically implies C;

if C = t then S is unsatisfiable. In order to simplify

notation we usually write m'_ (T/X,c) instead of 6)

(T/X,c'). Similarly for N e T we denote the derivation

N=(TN, 0), where c' is c restricted to TN by writing

N=(TN,c) Q

Until section 238 we use the term" derivation"to refer

to clash derivation. ® = (T,c) is a clash derivation

if for all interior NET, c(s-i (N)) is a clash and c(N)

is its resolvent, Given such a derivation (T,c) and N

interior to , c(s(N)) is said to be the clash at at N.

If N' E s-i (N) then the subset of c(N') of literals resolved

upon in c(s-1(N)) is called the set of literals resolved upon

at N' e If c(N') is a satellite of the clash c(s-i (N)) then

N' is called a satellite node of 0 . Similarly if c(N') is

nucleus of c(s-1(N)), N' is called a nucleus node of 6) .

If N E T then an occurrence of L E c(N) descends from the

same occurrence of L E c(N); If WE s-1 (N), if A is the

m.g.s ou. of the clash at N, if L'® = L E c(N) for LIE c(10)

not resolved upon at N and if the occurrence of Lt in c(iN')

c1.escends from an occurrence of L" in c (N"), then the

occurrence of L in c(N) descends from the occurrence of

L" in c(N").

1.9 Search Strate

'.7e distinguish betweon complete inference systems and

complete proof procedures. 1. refutation complete inference

system is a set of effective inference rules which when

applied to ar. unsatisfiable sot of clauses S0 yields a

refutation of S0' Tho refutation completeness of a

resolution rule P. can be formulated as an assertion that

for any unsatisfiable set S0 there exists a refutation 6)

such that each resolvent of a clash in 0) is obtainable by an

application of GZ - i' refutation complete proof procedure

is semi-effective methoa for eventually obtaining a

refutation of a set of clauses S0 when S0 is unsatisflable.

Thus a proof procedure consists both of an inference

system and of a search strate{r for obtaining refutations

within the system of inference rules.

The usual statements of completeness for resolution

systems implicitly assert the completeness of a particular

class of resolution proof procedures. It is easy to invent

British fl iseum methods for searching resolution refutations.

Such methods might, for instance, enumerate all resolution

derivations rejecting those which were not refutations of a

given input set S0 continuing until a first such refutation

ore found. At any given time only one derivation might be

under consideration, Such search strategies would be

extremely inefficient and much of the efficiency of resolution

derives from the efficiency of the search strategies associated

with it.

We shall say that an arbitrary set of clauses

e is a clash if some standardised set & of variants of

clauses in eiis a clash. The resolvent of e.is identical

to the resolvont of e'. Given a set of'clauses S and a

resolutions rule Qr let q(S) be the set of all resolvents C

of clashes 0C S, where 0 is an admissible set of

premises for application of the rule q . For a given input

set of clauses S0 let O0 (s0)
= S0 and for n > 0

O (S0) ={ C : C E 0(n
O 1

0

k ((50)

and C
n v 1'

V, 1 (S 0) { i = 0

-

thus C E Ok
n

(S0) if and only if there is a derilration 6) of

C from S0 such that each application of resolution in 0 is

an application of R and such that n + 1 is the number of

distinct nodes in the longest complete branch of 0 . The

00
6

(S0) is called the search space for SO . set V i
Given a set of clauses S0 a resolution procedure

(resolution rule Q plus search strategy) generates a sequence

of clauses (C1 2000.4 Cn, ...) from the search space for S0.

This procedure either terminates without generating the null

clause, terminates when some first C = Q or does not
n

terminate and .io c
n

= D,. In all of these cases we may

imagine that the procedure continues until all of the clauses
00

in
i
V

0a.
(SO) have been generated. The resulting (finite

or infinite) sequence (C1,..., Cn, ...) is called the trace

for S0 of the given proof procedure. Necessary conditions

that a sequence (C1,..., Cn,...) be a trace for a set of

clauses S 0
of a proof procedure o, consisting of a

resolution rule 6 and search strategy, are that

(1) for every Cn, n > I., either Cn E S0 or

C is the res olvent of a clash
n

G'= { C

n1

,..., Cnm{ such that 0n E CRI(a)

and ni < n for all i , 1. < i < m, and

(2) if e ; {C ,..., Cn { is a clash with

resolvent C then C = C for
n

some n > max { n.l , ..., n
m{

(provided that no Cn has been deleted).
i

A search strategy is a de, th saturation strat

if for every trace (G.1,.9., Cn,...)

Ci e
n

(SQ) , C. E
m

(SQ) and i <j imply n < m.

Depth saturation has the appealing defining property of

generating simpler derivations before more complicated ones.

What is more desirable is that simpler refutations be

generated before more complicated ones and that derivations

which can predictably contribute to simpler refutations be

generated before derivations which can predictably contribute

only to more complicated refutations. This last property

partially defines the family of diagonal search strategies

studied in chapter L.

If a resolution procedure includes deletion rules

(e.g. deletion of variants, subsumed clauses, tautologies,etc.)

then w e include in the trace I for any set S C all clauses

rejected by the doletion rules but include no other clauses

obtainable by derivations from such clauses after their delet-

ion. Thuz if (C1,..., Cn,...) is a trace T and the clause

C. is deleted immediately after the generation of the clause

Cj then i < j and at most only the clauses Ci ,Ci
1
,9.,C

in T are obtainable by derivations containing C i . This

convention allows us to treat the number n - 1 of clauses

occurring before the first C n = Q in the trace(C1,...,Cn,...)

of an unsatisfiable set S0 as a measure of the difficult,y of

refuting S
0

by the given proof procedure. This measure is

a first approximation which C-oos not take into account, for

instance, the effort involved in testing for the applicability

of the deletion rules themselves. It might be agreed, that,

given a program which implements a proof procedure, a more

appropriate measure would be the total time taken to rofuto

S0. Such a measure would however more accurately quantify

the effort expended by the program than it would the effort

expended by the proof procedure itself. In fact, given such

a program, an ideal measure would be the total cost involved

in reputing S0 (including charges for use of a computer, and

for writing and maintaining the program). In any case it is

important to note that the difficulty of refuting an unsatis-

fiable set SQ is completely independent _ o4 the complexity

of a refutation of SQ. The complexity of a derivation

0=(T9c) can be measured entirely in terms of intrinsic

properties of ®(i.e. the number of nodes in T, the length

of the longest complete branch of T, etc.), whereas the

difficulty of,refuting a set of clauses S0 has to be

measured in terms of the total effort expended to obtain a

first refutation of SO. The purpose of developing more

efficient theorem-proving methods can be met only by reducing

the difficulty involved in refuting unsatisfiable sets of

clauses. Thus much of the research in automatic theorem-

proving, involved in reducing the complexity of derivations,

is unrelated to the principal goal of theorem-proving research.

A deletion rule is compatible with a proof procedure cP

(complete relative to (P) if whenever T,, is the trace for

some S
0

of P, r2 is the trace obtained by applying the

deletion rule to clauses in T', and some Cn in T, is

then some C' nt in 12
is Ca.. A deletion rule may be

complete yet fail to be efficient if n' > n.

are the first occurrences of 13 in

n nt

and 12 respectively

then a sufficient condition for the deletion rule to increase

the efficiency of refuting S 0 (ignoring the effort involved

in applying the deletion rule) is for n' to be less than n.

In sections loll and 1.12 we investigate the completeness and

efficiency of deletion of subsumed clauses and tautologies.

1.10 Contractions.

The lifting theorem asserts that given a derivation

(Tic) and given for every tip N CLT a clause AN which has

c(N) as an instance then there exists an isomorphic derivation

,
If C and c r

-69*

it = (T,c') from S' = fANs N E T is a tip) such that if

S' is standardised then c(N) is an instance of c'(N) for all

N c T and c'(N) = AN for N a tip of T. The contraction

theorem is obtained by generalising the lifting theorem,

allowing AN to subsume c(N) when N E T is a tip. The

resulting derivation ()' from S' of a clause which subsumes

c(r(T)) is then a contraction of . The contraction

theorem yields the lifting theorem as a special case and in

its more general form is used for applications later in

chapter 1 as well as in chapters 2 and 3. We note that

our generalisation of the lifting lemma was motivated in

part by Brown's generalisation in [3] .

A set of clauses tom' subsumes another set of clauses

if for some substitution o°- and every l. E , there is

an unique ,'I' E CI such that A' o- C A. We also require
unj%"e

that for every A' E there be anAA E such that

A' C- C A. Thus o-- induces a 1-1 correspondence between

clauses At E and A E such that A' o- C A.

if

Let C, and ("?' ' be clasheao Then c,' covers

(1) C ' subsumes some subset of (3 (let o- be such

that A' o- C A for corresponding 11' E (3' and

A E(,),

(2) A' E .' is a satellite (or nucleus) of
if and only if A' o° is a satellite (nucleus) of a

70

(3) the resolvent of et subsumes the resolvent

of C ,
(4) e' is restricted if e is and

(5) if At al?' then L e Gt is resolved upon

in C' if and only if L o- C tcr-t is resolved

upon in e .

e' weak]y covers (if (1), (3) - (5) above hold for G and

et. The notion of covering here is only weakly related to

Sibcrt's notion defined in [48 J. The lemma below is the

local version of the contraction theorem and is used in

se :tion 1.11 to study the subsumption strategy.

Lemma 1.10.1. Let a be a clash with resolvent C ant: let

e' subsume 0. Then either

(1) some C' c e' subsumes C or

(2) some subset of e' is a clash and

covers 01 .

If e is a set of instances of clauses in 3',, then et' _

and C is an instance of the resolvent of (2.' .

Proof. Let C = { Al , ..., 11n, B } and

{111',..., lnt, B'} . Let a- be such that

lli o-- C -i and B' o-- C B. For 1 < i < m let
.

Ai = Ei U 11Oi, Ei 7(0 ,
.

B = F1 U ... u Fm U BO , Fi 0 , where

e _ { E1 U F1 lee., Em U fm } and

C (LO1 U ... U
AOm

U B0)6 where a is an

m.g.s.u. of 0 .

Lit

Case 1 . If L. o'" AQi for some i then

A! a° C C so T,.' subsumes C. Similarly if B' a-
1 1

C B then Bt subsumes C.

If case (1.) does not apply then Case 2

B' a°- l1 (F1

for 1, S

necessary).

.ti !
.

1

U .. U Fm) A 0 . Lssume that B4 a- n F. , 0

< m (by rearranging subscripts if

For 1 < i < m' let

E! U T.'Ci , El 1
O . O FU UFm' U BC' ,F it

{ E'1 U P' U F'

Ei'cr C Ei , Fi'a- C F
i '

AQlo- C .Ci and BO" C BC

Notice that o- e unifies E'. Let ®' be an m.g.s.u. of

then o-6 = e'/ for some A. The resolvent of

C, _ (A01'
U ... U `fl?m'

U BQ' } of

C' subsumes C since C'(C C (because

A I ie' A = A4ia- 9

BD' 9' Ba' a- e

C

C

T.1L ie C

where

0 and

Bp e (z C).

That a literal L is resolved upon in e:1 if and only if L is

resolved upon in C follows from the fact that

E.'a- C E and F.'o- C F.
1 1 1 1

Suppose e."'' is not restricted. Then for some i either

'e' C C'. 'e C C' or F E i i

But then

B tot/ Ei' a0 G C',K = C and E. 9 C C or

- 72 _

Fi' 6',(= F' or- & C C',(= C and Fib C C

and e is not restricted. It follows that C" covers C.

In case each A. is an instance ofA .' and B is an instance

of B' then case (a) does not apply, m' = m ; so ell =(31

and since all inclusions become equalities CIA = C, i.e. C

is an instance of C'.

Let d = (T,c) and t)' = (T',c') be derivations. We

define the notion, contracts 0 (also),31 is a

ccntraction of `1), by induction on the number of n of

nodes in T

(1) If n = 1 and T = {NO}, then T' _ {N'O} and

c' (NO') subsumes c (NC).

(2) If n > 1 then let N
0
= r(T), s-1(NC) _ {N19...,Nm},

= c(s-1(N0)) and (TN N.
1 < i < M.

One of (a) and (b) holds.

(a) contracts some Ui and c' (NO') subsumes

c(NO), where NO' = r (T').

(b) Let NO' = r (T'), then s-1 (N
0

') , . Let

s-1(N0 1) - {N1'9..., N' m,},

= c' (s1(NO') and

'

= (T' N, , c ') , 1< i < m'. Then
i

contracts Q i for all i, 1 < i < m'< m

(after rearranging subscripts if necessary)

and (w.' covers e.

73

Thus if 6) is a derivation of a clause C from clauses S,

if 6)= is a derivation of C' from S' and if('' contractsC,

then C' subsumes C and each clause in S' subsumes a clause

in S (provided S' = {e' (N') : N' e T' is a tip)).

Associated with every contraction 6)' _ (T' c') of a

derivation 6) = (T, c) is a I - I mapping V: T' -' T

such that for every N'E T' the clash c' (s(N')) covers

the clash c (s(N)). The mappingiis defined (using

the notation in the definition of contraction) by induction

on the number n of nodes in T:

(1) If n = I then (N5) = NQ.

(2) If n >1 then

(a) If V contracts some with associated

mapping then is also associated . 1

with the contraction M' of G, otherwise

(b) If 7i is associated with the contraction

of D, for i then
1 1

'(NC') = NC and

t(Nr) = li (N') for N' E T, nT'N,.

Examples.

(i) Let 6 =(T,c) where T = {No ,...,N1C{ and whore

the functions on T is defined by the diaer^.m

below and c is defined by the following

equations.

;` N8 / N9 N10

c(N0)

c(N1)

c(N2)

e(N3)

c(NN)

c(N5)

1

f

N
5

_ {P (b)}

_ r (a), P (b)}

Q (Y), P (Y) f

={P (a), (b) }

{Q (b), P (a) }

_ (b) P (b))

' N
6

N2

1-111.11

Nom./

C(N6)

C(N7)

_ (a)}

_ (a), P(a), (b)}

C(N8)

e(N9)

c(N10)

_ {P (b)}

_ {Q (a), Q(b)1

{P (b), Q(x), (x)1

Let Q' = (T',C') where TI ={N0 N2, NN, N7, N83 N10} and

where s on T' is defined by the diagram below and c' is
defined by the following equations

N2

c' (N0) = {P (b)} C' (N7) = {P (z), Q (b)}

c' (N2) = {Q (Y),P (y)} c' (N8) = {P (u)}

C' (Nh) = {P (v)} ct
(N10)= {P (b), P (v) j

Then Q' contracts d and f"(N.) = N. for all Ni e T' where

is the mapping associated with the contraction.

(2) Lot O, OD land be defined as in example (1) .

Lets" = (T", c") wh-)re T" _ {N4,
N8' N10}

where s on T" is defined by the following

diagram and c" by the following equations.

and

N10 c" (N4-) = t
r

G" (N8) _ {P (u)}

c" (N 0) _ {1 (w) }

t

then 6" is a contraction of both Q and ®'.

The associated mapping -'' is defined by tl (Ni) N.

for all N. s T" , both for the contraction of QD by

(D" and of 0)P by at*

Theorem 1.10.2 (contraction theorem). Let 6 = (T, c)

and for every tip N let 1' be a clause which subsumes c(N).

Let S = { L.: N eT is a tip } be standardised. Then there

exists a contraction 63' = (T', c') of 0 which is a derivation

from S. If each c(N) is an instance of .'. , when N is a tip,

then T' T and Of lifts dD .

Proof (by induction on the number n of nodes in T).

If n = I then T = N0 . Let T' = T and of (N0) =.N.

Suppose that n>1 and that the theorem holda for derivation

troes containing fewer than n nodes, let N0 = r (T) and

s1 (N0) { N .., Nm} . Lpt _ (TNC'c) . Since each TN
1 1

contains fewer than n nodes, by the induction hypothesis, there

exist contractions 6 ' _ (T.', c,') Of O . Each O3' is a

derivation from S and since S is standardised no clause in

0. ' shares variables with any clause in for i ' 3 .

Let Ni' = r (Ti'), J< i <m, let

_ {o (N1),..., C (Nm)1 and

{c1' (N1),.., ctm(N'm) { .

C is a clash with resolvent c (N0) and c.(N.')
1 3.

subsumes c (N i) for each i,1 < i < m. (j is standardised.

By the preceding lemma either

(1) some c i t (Nti) subsumes c (N0) or

(2) some C" C 01 is a clash with resolvent b'

and C" coversO'. Let' = {c '(N '),..<,e ' (N') }.
1 1 m m

Case jlj Let ID' _ ' . Then Q)' is the desired contraction

of 6..

Case 2 Let dY = (T',c') be defined as follows:
4 . 0

T' Not} U T1' U ... U T'mf

s-t (NO') _ {N,..., Nr'i,) ,

c' (N0') = C' and

c' (N) = c! (N) for AT e T' n Tit .

Then 0' is the desired contraction of GD . In case each

c(N) is an instance of 1, for each tip N then by induction

hypothesis each Ti' = TN and 4)i' lifts 6).. Therefore

case (1) does not apply and C'.1 . If we let N0' = N0

then T' = T c (N) is an instance of c'(N) for each N and

OV lifts (D .

77

The fact that the contraction lemma provides information

about the completeness and efficiency of subsumption suggests

that a similar theorem might serve the same purpose for

deletion of tautologies. In section 112 we show that for

any derivation from clauses S, where O possibly contains

tautologies, there exists a derivation(' from S where

contains no tautologies and Of is a semi-contraction of

The definition of,semi-contraction is obtained by

replacing the condition that C?' covers e (in (2b) of the

definition of contraction) by the weaker condition that Qom'

weakly covers C . Thus every contraction is a semi-

contraction but not conversely, Lssociated with every

semi-contraction D' of a derivation 6) is a mapping it
defined as for contractions.

In order to apply the generalised version of the lifting

lemma and to obtain information about the completeness of

deleting subsumed clauses and tautologies we need to examine

some of the properties preserved under contractions and semi-

contractions. We note that if (S1' _ (T',c') is a semi-

contraction (contraction) of a derivation Q) = (T, c) then

1v10m3. 6' is a refutation if0)is,

1.10.14-. Q' is binary if 40 is,

1.10.5. for all N E T',c'(N) is not a tautology

if c (t (N)) is not, where ''is the mapping

associated with the contraction 0' of 6) (thus

CU' contains no more tautologies than ()) and

78 -

1.10.6. if ®" is a somi-contraction (contraction) of

(D' then 0" is a semi-contraction (contraction)

of 6) .

The following properties are noted in the sequel:

1.10. . ()t is minimal if l) is (Theorem 1.13.2).

1.1008. If 0' contracts 6) and the clash at 'N) is

an M-clash then the clash at N is an M-clash

as well (remark preceding Theorem 2.4.1).

1.10, . If N is inferior to T', e,' = c' (s-1 (N)),

e
(s..1 (''(N)) and A' E S' subsumes

A e&then At is O(- restricted if A is

(remark preceding Theorem 2.6.1).

1.11 Deletion of Subsumed Clauses.

Strategies for deleting variants and subsumed clauses would

seem to be promising first ctndidatos for establishing ri4:orous

proofs of efficiency in theorem-proving. Our attempts to

obtain such results have uncovorod unexpected problems not

only for efficiency but for completeness as well. In

particular our proof for the completeness of subsumption in

[17] is not to the point, while Sibert's proof [48]

applies only to a very inofficiont version of depth saturation

search. In fact counterexample (1) below shows that a

certain strateKr for deleting variants is incomplete for

P1 - resolution.

In the counterexample below we make use of the following

s &21e depth saturation strata 7 which is defined only for

binary resolution rules is defined by specifying the

trace T= (c1,..., C, ...) for an initial set of clauses S 0

of the proof procedure determined by 5 and a given binary res-
olution rule R:

(1) Let C1,..., Cm be d .stint clauses in SC where

S
0

= {C 1,...) Cm} .

(2) Let p0 = 1 and q0 = 2. Suppose that pi and qi

are defined but that p. and qi+1 are not.

Suppose that C1,.., Cn are defined and that

C
1

is not. Let C _ {C pi .9
Cqi} .

R(C)
If

R(,,') A 5 then let Cn+,1, .p, Cn+k be distinct

clauses ir: j 1(C) where 6 (e) = n+ 1'
.. '

Cn+k} .

(a) If pi + 1 = qi then let pi+1 = 1 and qi+,=q,- +1

(b) Otherwise let p. 1; pi+ i and 9.i+1
_ qi

Exam les. The following examples are used in establishing

counterex,mples 1-3 below,

(1) Let the initial set of clauses S
0
be {C1,..., C4}

where C1 = {P (a,b)} , 0 2 = {P P (f (x), Y) } ,

C3 = {
P (x)Y), Q (Y) } and C. (b)} . Let A be

P1 - resolution, Let = (C1,..., Cn,...) be the trace

for S
0

of 0 and L. Then

C5 = {P (f (a), b)} is the resolvent Of {C1' C2}

C6 = {Q (b)} of {C,1, C3} ,

C7 = { P (f(f(a)) . b)} of , C5} ,

C8 = {Q (b)} of {C3, C5} and

80

. C9 = Q of { C4, C6} .

It is easy to verify that for all n > 2 ,

C3n+1 {P (fn (a), b)} ,

{Q (b)} and
C3n ± 2

C3n + 3

(2) Let S0 be {C,,..., C5} where C1 = {G (y), P(y)} ,

C2 = {G(f (x)) } , C3 = {P (f(a))} , C4= {P (f(b)),P(a)}

and C5 = {P (f (a))}. Let Rbe binary resolution and

let r = (C19..9 C,...) be the trace for S0 of OZ and y_.

Then

C6 = {P(f(x))} is the resolvent of {C1, C4}

C7 =

C8 _

{G (f(b)), P (a)} of {C 1, C4}

{G (f(a))} of {C1, C5} ,

P

C9 = a of {C3, C5} ,

C10 = {P (a)} of {C4, C6} s

C 1 1 = C4 of {C5, C
61

,

C12
= {P(a)} of {C2, C7} and

C13 = CJ of {C1, C$}

C is undefined for n > 11+.
n

Subsumption is admissible for a resolution rule R if
whenever O is a clash with resolvent C e R(,) , (?,' a

clash with resolvent C' and C' covers i then C E 0"x,1(Gar)

In particular subsumption is admissible for (, if J6 is

preserved under contractions (i.e. if whenever 0' contracts

0 and every application of resolution in d) is an application

of R then every zppl:,oatipn--of rosOlu.tion irk L is an application

of QR).

Theorem i 1,1.1 states that if subsumption is admissible

for 6 then simple deletion of subsumed clauses (defined below)

is complete relative to 6 and to arj search strategy Z for (R,

Let Tj be the trace for a set of clauses Sc of a proof

procedure 60 . We define the trace T2 for S
0

of P with a given

deletion rule by specifying which clauses in
T1

are

generated in
12

and which of these clauses in
12

are deleted

in
T2.

The order of clauses in
r2

is the order inherited

from j
1

. Thus if the n-th clause Cn in
T1

is generated in

T2
then Cn is the n'-th clause in

i2
where n's n and n-n1 is

the number of clauses generated in r1 before Cn but not

generated in T2
before Cn.

Let
11

= (C1,...1 C,...) be the trace for a set

of clauses S
0

of a proof procedure (P. The corresponding

1:race
I2

of P with simple deletion of subsumed clauses is

defined inductively :

(1) If
Cn

in
T1

is in SC then Cn is generated in 12.

(2) If Cn in
T1

is the resolvent of a clash

C = { C , . . . , Cnm; , ni < n, then Cn is

generated in
f2

if and only if each C is

nj
generated and not yet deleted in

T2-

(3) If Cn is generated in
T2

then

(a) if C
n

is subsumed by some C i , i < n, generated

and yet undeleted in
T2

then Cn is deleted,

(b) if Cn properly subsumes some Ci, i < n,

generated in2 then Ci is deleted. (C

Properly subsumes D if C subsumes D but D does

not subsume C).

Counterexample 1 provides an example of a well-defined

strategy for deleting subsumed clauses. This strategy is

incomplete as is the strategy which is derived from it by

limitation to the deletion of variants.

(1) . Let deletion of subsumed clauses

be defined by replabing conditions (3a) and (3b) in the

definition of simple deletion by (3a') and (3b') below.

(3a') If Cn is properly subsumed by some C.,i< n,

generated and yet undeleted in
12

then Cn is

deleted.

(3b') If Cn subsumes some C., i < n, generated in
12

then C. is deleted. i
That this deletion strategy is not complete can be

verified by taking the SC, 6 and ,£ of example (1).

(Note that subsumption is admissibly; for k .) SC is

unsatisfiable and Q is the 9-th clause generated in
Ti.

Applying the deletion rule defined above we obtain the trace

For n<8,

generated.

C'n
= Cn and C' is deleted when C'8 is

6

For n.>8, when n is even, C'n =

deleted when C'n is generated.

For n>9, when n is odd, C'n

is never deleted#

f O,(b)} and C' n-2 is

{ P(f 2 (a),,b) { and

Thus no Cri in `r2 is the null clause.

Theorem lell.1. Let subsumption be admissible for a

given resolution rule q O. Then subsumption is complete

relative to q and any search strategy Z for P .

Proof. Let r1 be the trace for a set of clauses SC of

and Y_. Let
12

be the corresponding trace with simple

deletion of subsumed clauses. It suffices to show that for

every Cn in Ti there is a clause Cn, generated in T2 which

is never deleted in r2 and such that Cn, subsumes Cn. (C n,

is never deleted .n
T2

if Cnt is not deleted after the

generation of Cm in 12
for all m> n'.

We observe that thero exists no infinite sequence of

clauses Cn ,., Cn ,..o such that Cn properly subsumes
1 3. i+1

C From this observation it follows that for every
n. i

clause Cm generated in
12

thore exists a clause Cm, generated

and never deleted in
12

which subsumes Cm The proof now

procedes by induction on n r the index in of the clause

Cn. If n = 1 then C1 is generated in
T2

and is subsumed by

some C1, generated and never deleted in 12.

Suppose that n >1 and that every Ci , i< n, is subsumed

by some C., generated and never deleted in T2. If Cn is not

a resolvent then Cn is generated in T2 and is subsumed by some

Cn, generated and never deleted in r2. If Cn is the resolvent

of C _ {C $Q..$ Cn } , n. < n, let C! = {C n, , ..., Cn, }
1 m 1 m

where each C , subsumes C and is generated but never
n i ni

deleted in r2. Then e' subsumes e* By the contraction

lemma either some C n' subsumes C or some ?' C &,' covers
°°-

(a In the first case we are through. In the second case,

by the admissibility of subsu-nption and the completeness of the

trace
129

the resolvent of C" is generated in 2 and is some

C n4. C n'
subsumes C

n
and some never deleted C n" generated in

T2
subsumes Cn, and therefore subsumes C n.

As can be seen by examining the proof of theorem 1.11.1

simple deletion of subsumed clauses need not be efficient, even

ignoring the effort involvod in applying the deletion rule itself.

Counterexample (2) shows how this deletion rule can hurt efficiency

by delaying the generation of the first null clause.

Counterexample j2L Take the SC , 6?, and of example (2).

Then the tracel1 for SO of Q and ._ is the trace T of example

(2). SC is unsatisfiable and the first instance of 0 in T,

is CO. If
12

= (C1' ,...,, C'n9...) is the trace for SC of 61

and _with simple deletion of subsumed clauses, then the first
instance of Cl in T2

is C,' C. Moro particularly:

For n < 8, C' = C and C' is deleted when
n n 3

C'8 is generated,

C9 is not generated in
i2

since C'3 has been deleted

and therefore { C3 .4
C is not resolved in T2.

C9 = {P(a)} , the resolvent of {C' , C'6} and

C'4 and C'7 are deleted when C'9 is generated.

C'10 is the resolvent of {C'5, C'a}

Counterexample (2) suggests that it might be possible to

remedy the inefficiency of simple deletion by replacing

deleted clauses by the clauses which subsume them. In other

words if the search algorithm would generate the resolvent

C of the clash C = {C ,..., C
}

but certain C are

nI n
in ni

deleted and subsumed by undeleted C , then examine the set ni
Q,,' = {C , , ... C , { and if some C e' is a clash

n1 nm

then generate its resolvent C' in place of Co Admittedly this

procedure is quite difficult to define precisely for arbitrary

search strategies. But for the case of simple depth

saturation there is no problem. However counterexample (3)

slows that even in this case efficiency cannot be guaranteed

since the replacement procedure may lead to the premature

generation of resolvents.

Counterexam 1e_(_3) Let . be simple depth saturation.

Then Y_' (.,5-:with the strategy of replacing subsumed clauses)

is defined by (1) and (2) in the definition of 2. and by (3)

below.

(3) Suppose that C
n

has just been generated.

(a) If C
n

is subsumed by some undeleted

Ci, i < n, then delete Cn.

(b) If C
n

properly subsumes some undeleted Ci,

i < n, then replace C. by C (i.e. lot
i n

C. assume the new value C) . i n

It is easy to verify that £' is complete with resolution rules

R whicr admit subsumption. The reader will note that

redundancies are introduced by condition (3b) since a

clause C may now occur in several positions C.
1

and therefore
7.

the resolvent of the same clash may be generated more than

once These redundancies can be eliminated without losing

completeness by modifying; (3b). However even with such a

modification the counterexample below continues to hold since

no such redundancies are actually introduced in this example

by applying 7,' unmodified,

Let S
0

andf, be the S
0

and A of example (2) and let
T2 = (C1',aso9 C'n,ose) be the trace for SC of6 and Z's
Then C'10 is the first instance of Q in

T2
whereas C9 is the

first instance of 0 in T,-
For n<7, C'n = Cn but C3 assumes the new value

C6 = {P(f(x))} when C6 is generated.

C' 8 = I P (a)} , the resolvent of IC
3

, C41 , which

was not a clash in T1s C'4 and C'7 assume

the neu value C ' 8.

C ' 9 C 8, the resolvent of { C' 1, C' {

C'1,C t3 , the resolvent of {C'3, C'5}

Suppose that subsumption is admissible for a resolution

rule (R , Let Z be a search strategy for 6 and let I
(C1,,.., Cn,...) be the trace for a set of clauses SC of

QZ and Y- , 'We say that subsumption is monotonic in
.r

if

whenever a clause Cn in T is the resolvent of a clash C
{ Cn , ..., Cn } and whenever(_"' = {C n' , ... Cn' } covers C'

m m'
where C subsumes C and ng, < n. then if C is the n'. n. 1 1 n'

1 1
resolvent of C;" then n' C no If Lis simple depth

87

saturation and if subsumption is admissible for a binaxy

resolution rule 62., then subsumption is xonotonic in any

trace T of A and Z If ig admits subsumption and . is

a diagonal search strategy for O , then subsumption is

monotonic in any trace of lRandEwith a possible exception

for the case of clashes c' and C',' (as above) where a clause

C i subsuming Gcontains more literals than C
n i ni ni

Counterexamples (2) and (3) show that monotonicity of

subsumption does not guarantee efficiency either for simple

deletion or replacement deletion of subsumed clauses.

Theorem 1.11.2 implies that monotonicity of subsumption is a

sufficient condition for the efficiency of deleting newly

generated subsumed clauses* This strategy includes as special

case the ordinary strategy for deleting variants.

Let Tt = (C1 $..., Cn9...) be the trace for a set of

clauses S0 of a proof procedure (. The trace
T2

of

with the deletion ofnewl £eneratec subsumed clauses is defined.

inductively;

(1)

(2)

(3)

If Cn in Tt is in SC then Cn is generated in T2

If Cn in Tt is a resolvent of the clash

(= {CI' 960m, Cn I , n i < n, then Cn is generated
t m

in T2 if and only if each Cn is generated and i
undeleted in

T2-

if Cn is generated in T2 then Cn is deleted. if and

only if C
n

is subsumed by some Cx.., i < n.

-88-

Theorem 1.11.2. Given a proof procedure 9 and

an unsatisfiable set of clauses SC9 let
T1

be the trace

for SC of and let T2 be the trace for SC of ,' with

deletion of newly generated subsumed clauses. If subsump-

tion is monotonic in T1
and if Cn is the first instance of

in `r1, then some C' n, = 0 in T2 and n' < n.

Proof. We show by induction that for all n > 1

there is an n' < n such that C' n, in T 2 is undeleted ahd

subsumes Cn in Ti.

If n = 1 then C1 E S0 and C1' E S0 are identical,

Cis undeleted and subsumes C1 Suppose that for a given

n > 1 each Ci, i < n, is subsumed by an undeleted C'i i' < i.

If C E S0 then Cn is generated in 12
and is some C'n, in.

T2

where n' < n. If C' is deleted then some undeleted C' n, i

for i < n' subsumes C1 n'. But then C'i subsumes C. and

i < n. If Cn is the resolvent of (` = {Cn ,..,C it
1 m

ni < n, tiion C"' _ { C' n' , ... , C' n, } subsumes (2) where
m

C' , is undeleted and subsumes C and n'.< n.. But then

by the contraction lemma either some C'n, subsumes Cn or

some 3'' C C?' covers a . In the second case the

resolvent C' n, of (s" subsumes Cr and n' < n. If C' n, is

deleted in T2 then score (" i subsumes C'n, and Cn where

i< n' <n.
Theorems 1011.1 and 111.2 and counterexamples (1)-(3)

do not constitute a thorough analysis of deletion rules for

subsumed clauses. 1. more satisfactory analysis would probably

involve comparing the number of clauses omitted by the deletion
rules with the number of new clauses introduced before the first

rules with the number of new clauses introduced before the

first instance of U . It is quite possible for deletion to

delay the generation of 11 and yet compensate by omitting the

generation of more clauses than are introduced by this delay.

It might be hoped that such an approach would also be applicable

to other more difficult problems of efficiency in theorem-

proving.

1.12 Deletion of Tautologies.

If C1 .., Cn,..a) is the trace for SC of a proof

procedure then the ordinary rule for deletin Itautol can

be defined by specifying which clauses Cn in are generated

and which of these are deleted in the corresponding trace
12

of 6) with deletion of tautologies.

(1)

(2)

If Cn in T, is in S0 then Cn is generated in r2.

If Cn in l, is the resolvent of C = {Cn ,..e,Cn } y

'I m

n. < n, then Cn is generated in
12

if and only if
each Cn is generated and undeleted in T2.

1
(3) If Cn is generated in T2 then Cn is deleted in T2

if and only if Cn is a tautology.

Theorem 112,2 implies that if 0 is any resolution rule
preserved under semi-contractions then deletion of tautologies

is compatible with a and any search strategy for Q.

Equivalent-ly deletion of tautologies is compatible with O.

and E if whenever C is a clash with resolvent C E (R1 (C))

(° is a clash with resolvent Cf and (weakly covers e, then

90

C' E 6 (lam') .

Suppose that a resolution rule R is preserved under

semi-contractions. LeAbe the proof procedure determined

by R and a search strategy Ffor sand let r =(C1,,..,Cn,.,.)

be a trace of 6). Then weak covers are monotonic in T if
whenever a clause Cn in I is the resol.vent of a clash

{Cn ,...,CnI and whenever _ {Cn, 00,Cnt { weakly
1 m 1 m t

coversC'where Cn, subsumes Cn. and nri < n. then if Cn, is i i
the resolvent of (j then nt< no Theorem 1.12.3 implies that

monotonicity of weak covers is a sufficient condition for the

of :ficiency of deleting tautologies o

Lemma 1.12.1. Let e be a clash with non-tautologo.u

resolvent C and let D E e be a tautology. Then either

(a) some C' E Cl subsumes C or

(b) some subset 0' C v, D X (3t, is a clash with

rosolventt C' subsuming C and e weakly covers Ca.
.

Proof, Let D = {L, L} U D0= Let C={1'11n,B1
0 tl 0

where I.. = E. U 1%i , B = F1 us** U Fn U BO, Ei Fi

and c = (1-,01 U ... U 110nU B0) e where 0 is an m.g.s.uo of

= {E1 U .1

1
,..., En U Fn} . Since C is not a tautology

at least one of the literals L or f is resolved upon in D.

Thare are three cases to consider.

Case(aD is the nucleus B of e and only one of L or

L is resolved upon in D. We may assume that L is resolved

upon and that I E 1. Then 111 subsumes C. For since

E1 e =
F1

8 = {L e, and since L e B0, L e E' B0e and

E1 e B
0

e . 5o ;I18 C BOG, U 1101 e C C.

Case (b1i. D is the nucleus B of e and both L and

are resolved upon in D. Vie may assume that L e F1 and L

Let e' = {i,1 a 1121

because

and 01 ' = {E1 U E2;

E1 e F19 = {L 8{ and

0 9 unifies e.'

E2e = F2e = {L 91

Let e' be an m.g. s Au. of '' and let e

resolvent of Qr is

C? = (A01 U
A02) e ' and

C' 9'' = (1101 UL02) 9 C C.

9'e". The

So C' subsumes C. Suppose C is restricted and (?i is not.

L

E F
2`

Then either L G' or L 9' is in C'a But then L e or f 9 is

in C' & II C C and (.' is not restricted.

Case (b2). D is a satellite of . Suppose that L

is resolved upon in D and that D is 111 Then L e E1 . Let

e' = C -- {D } and (j = e- {E1
UF1

{ . Then e unifies j .
Let 9' be an m.g.s.u. of E and let e = W6 ". The resolvent

of('; is

C' _ (F1 U 1,02 U ... U
On

U B0) e '

C' subsumes C since

E1 e = F1 0, _ {LC-{ and F1 e = {Le{ C A01 e , so

C' 9" = F1 e U
(1102

U ..U
AOn

U B0) e

C 1101 8 U (A 02 U ... U .,.0n U B0) A= C.

is not restricted since EP, E F1e and f e E C,

Theorem 1.12.2, Given a derivation 0= (T, c) from S

of a non-tautology c(r(T)) there exists a derivation

(T',c') from S of a clause which subsumes c(r(T)). is

a semi-contraction of 0 and(D' contains no tautologies.

Proof (by induction on the number n of tautologies in

If n = 0 then take m' = G. Otherwise n >0 and we

assume that the theorem holds for any derivation containing

fewer than n tautologies. Let e be a clash in 6) containing
at least one tautology D, i.e. e = c(sr1(N0)) for some

N0 E T and D = c(N') for some We s-1 (N0). Choose N0 such

that c (N0) is not a tautology. By the preceding lemma either

case(l) some C' = c (T?.) E e subsumes c(N 0), or

case some e C e , D is a clash, and

c3' weakly covers (e .

In either case let T
0

be the subtree of T obtained by ignoring

all of T lying above N0 (i.e. TO = (T - TN) U {N0}) and let
0 D = (TO,c). dissociate with every tip NETS a clause l.,N which

subsumes c(N) : = C' and i1N = c(N) for N N0. By the
0

contraction theorem we obtain a contraction (0' = (TO',c ©)

of 0 Le-t NO' c TO be the tip corresponding to N
0

(i.e. NO' (N0) where 4' is the mapping associated with

the contraction ZDO of f0) . Then c0' (NO') _
N

C'
0

Ii case (1) let 0Y (T",c'') be obtained by identifyinG

N0' in T0' with N. in TN (cYc(N0') = c(Ni)--C'). In case

(2) let 6)" be obtained by grafting the derivation trees TN

to the node N0' in T
0

1 where N Es-1 (N0) and c(N)

More precisely let

T" = T0' U [N :NETN. and c (N.) Eel}
i

C'' (N) = c (N) for N E TN.
1

c'' (N) = c0' (N) for N E T t
-1

s (N0' IN i : c (N.) E e

In both cases, we obtain a semi-contraction Cpt' of 4).

(fi is a derivation from S and Y' contains fewer than

n tautologies (by 1.10.3)- By the induction hypothesis

there exists a semi-contraction j of Qj" such that C1'

contains no tautologies and is a derivation from S of a

clause subsuming c (r(T)), By tha transitivity of semi-

contractions Ot is the desired semi-contraction of (0.

Theorem 1.12.. Given a proof procedure 9 and an

unsatisfiable set of clauses S0, let be the trace for SO

Of 6l and let
T2

be the trace for S0 of (P with deletion of

tautologies. If weak covors are monotonic in T1 and if Cn

is the first instance of 13 in
11

, then some C' n' = [2 in
T2

and n' < n.

Proof. The proof is similar to that of 1.11.2. To show

that for all n>1 there is an ne < n such that if C in
°` n 1

is not a tautology then C'nt undeleted in
r2

subsumes Cn.

If n = I then C1 E SO and CI E S0 are identical,, C1 t

subsumes C1 and is undeleted in
T2

if C1 is not a tautology.

Suppose that for a given n>1 each non-tautologous Ci,' i< n'

is subsumed by C!, ,, i'< i9 undeleted in ,12. If CnE S0 then

Cn is generated in
12

and is some C'nt in
12

where n' < ne

C'nt subsumes Cn and is undeleted if Cn is not a tautology.

If 0n is not a tautology and is the resolvent of C =
{ C ,019 C

n}
, n.< n, then either some non-tautologous

xi i
or some (?' C (weekly covers O and (mot

I
C subsumes C

n ' n, i
contains no tautologiese In the first case some undeleted

C? subsumes C and also C where n' <n. < n9 In the
n! n. n i-- i

second case {Ctnt nt where C'nt
'I m' 1

subsumes C

ni
and n' i

< n
i
,, subsumes 3 and each C '

n' e (a "
-i i

is undeleted in i2 if C'nt is the resolvent of e then

n'< n and either some C' n!
subsumes C' n' and C

n
where

i
nS' <n' < n or some subset of covers e" and

therefore weakly covers L' and therefore the resolvent of

C''' undeleted in r2 is some C'nt t in
'r2

where n''< n since

each nt i < n. for C' E

1

'IC'I Minimal Derivations.

In sections 1I.9-1112 we adopted the convention of calling

an arbitrary set of clause;; a clash if some standardised set

'21' of variants of clauses ineis a clash. In this section

it is convenient to revert to the moro restrictive definition

of clash, reserving the torm for standardised sets of clauses,

We introduce the notion of a ground clash e which is like a clash

of ground clauses except that in this case we allow that C
contains variables me, is not standardised. More precisely,

is a .4°rou ld clash if eis of the form {X11 , ...,1n D1, where

Al = {L1{ U .1.01, ...' 1,n {Ln } U
AOn

B 1,..., Ln{ U B0.

The resolvent of e is C =
2.01

U.>. U L1On U B0

Notice that given an arbitrary clash e with m.g.s.u. &

and resolvent C, the set of clauses O e is a ground clash

with resolvont C p r ovidecl that for no .t e G and no L,L ! E L ,

where L is resolved upon inCand Ll is not, does L®= We o

Thus in particular e& is a ground clash if L' is restricted.

A derivation (T,o) is mound derivation if, for every

interior NET, c(s(N)) is a ground clash with resolvent

c(N). Thus every derivation from a set of ground clauses

it a ground derivation but not conversely.

Given a derivation _ (T,c), lot the pair di=(T

be defined by letting

c(r(T)) = c(r(T)) and, for N r (T),

c(N) = c(N) e, 000 Gn where &i in the m.g.s.u of the

clash at si(N) axid whore sn(N) = r (T),sn_l(T) A r (T).
If m is a derivation then it is a ground derivation lifted by

(Do However may not be a derivation even if every clash

in 6) is restricted (witness Andrews I counterexample [2 1).

Theorem 1.13.1 implies that a necessary and sufficient condition

for CD to be a derivation is that 6) contract some ground

derivation CD!.

la derivation (D = (Too) is standardised if, for all
N;NIE T such tnat Tj TN!= 0 , c(N) and c(N!) share no

variables, 1,, derivation 0 may fail to be standardised even

though en.ch clash in 6) is starxlardi.sed (since literals
resolved upon in disjoint subderivations of(D may contain

common variables). It is easy to verify that if 0 _ (T,c) is

a derivation (but not a ground derivation) then the derivation

W = (T,c') obteined by applying the contraction theorem

to ® and the set S' is a variant of c(N), NET a

tip} , where S' is standardised, is standardised and equivalent

to M in the sense that c' (N) is a variant of c(N) for all
N eTo

.0! . If (Z= (T,c) is standardised and Theorem 1.

contracts (or semi-contracts) a ground derivation 0' =

(T°,c') with associated mapping 't , then i5 is a ground

derivation and contracts (semi--contracts) 60' with mapping

For some /*, ant for all N ET,

c (N) /. C c' ("' (N)) e

Proof (by induction on the number n of nodes in T').

We prove the theorem for the case where 6) contracts '. The

proof is identical when (A is a semi-contraction of Of If
n=1 then, for some N0 and N0' , T' = {N} , T = { N. } and

(N0) = N0' is a ground derivation and since

c (N0) subsumes c' (N0') (N0),(C c' ('(N0)) for

some

lissume that n>1 and that the theorem holds for any

derivation coritractin, a ,round derivation which contains fewer

than n nodes. Let Not = r (T'), N0= r(T), s-1(N0')=

{N0and4j'i
(T'DT, , c'), 1.i gym'. If i

s-1(NO) 0 , let s-1 (N0) _ {N1 , ..., N} and c)

Suppose that QD contracts some ' with mapping; and

that c (N0) subsumes c'(N0), Since T'
N'

contains fewer than

n nodes, C) is a ground derivation, contracts (D.' with mapping

I- and, for all N E T, c(N) ,/(C c' (t(N)) for some /\ .

Since c(N0) = c(NO) subsumes c'(NO'), contracts 6' with

mapping 't
If 0 contracts no Q. ' then S-1 (NO) m <ni' , 6

contracts (D! with associated mapping". is the

restriction of "'to
TN.

) e = c(s-1 (N0)) covers,' _

1
c'(s(N0')) and '"(NO) = NO'o Let & be the m.g.s.u. of

By induction hypothesis eaohi = (TN j,

where ci (N) 0 = c (N) for N ETN , is a ground derivation
I

which contracts' with mapping 'ti and, for some i and

all N E TN ci (N) i C Let

Since e covers C.', d) is standardised and e! is a ground

clash, o- unifies & and therefore <r = e/\ for some t)ut

then -c(N)/\ C c' (t (N)) for all N E T.
ti 0 is a ground derivation which contracts 6S)' with

associated mapping' "if for every NET, N r(T),
c(s..1

(N))

is a clash which covers c" (s_1 ('^(N)) a But in general

whenever a clash C, covers a clash e!'with associated

substitution a- then e is a clash;,hich covers e with

associated substitution / when & and /(are such that o- _ eA

But this property clearly holds for the clashes Band e' at

NO and M'' (NO) as well as for the clash ci(s-1(N)) and.

c s
-1

(s (L (N))) when N e Ti . Therefore is a ground'

derivation and contracts O' with mapping t-
1, notion similar to that of minimal derivation was

introduced by Loveland for the case of binary ground derivations

in order to prove the existence of linear refutations

containing no tautologies [52] o The existence of various

kinds of minimal derivations and refutations is proved in

Chapter 2 by using Theorem 1.13,2 below. Implementation of

the minimality restriction serves several functions: it

provides a method for effectively applying the clash

restriction, rejects derivations which do not lift ground

derivations and tends to retain only the simpler of equivalent

derivations. This last property can be stated precisely

for the case of a minimal refutation 4J of a set S, by saying

that the number of distinct nodes in the longest branch of D

is no greater than the minimal number cf distinct atoms in

any set S' of ground instances of clauses in S. Clearly

the retention of only the simpler of equivalont derivations

is important for efficiency.

11 ground derivation (D = (T,c) is minimal if for no

NETS Nte T lying above N, L' E c (N') resolved upon at N' and

L E C (N) does I L' I = I L I An arbitrary derivation

(T,c) is minimal for no N ET, N' E T lying above N,

Lt E c (N') resolved upon at N' and L E c (N) does

I L'&1 00. n j=
IL k+1 .. &

I where e is the m.g.s.u, of

the clash at s1 (N'), where N = ak(N'), sn(N)=r(T)

- 99 -

and sr-1(N) L r(T)

It is easy to verify that a derivation D is minimal

if and only if is.

The following is a simple, if not most efficient,

method for implementing the minimality condition:

(1) Associate with every derivation (D = (T,c) of

a clause C the history (T,a) of

literals resolved upon in i.e.

(a) if T = {ND} then a(N0)

(b) if NC = r(T), s-1(NO) _ {N1,...,Nm

#i = (TN ,ai) is associated with = (TN ,c),
3. 3.

El isihe set of literals resolved upon at Ni

and e is the m.g.s.u. of the clash at NC,

then @* = (T, a) where

a(NO) = c, , a(N.) = Ei 0 and

a(N) = ai(N) for N E TN - {Ni} .

(2) Reject, as incompatible with the minimality condition,

a clause C obtained by a derivation 0 with

associated history }* _ (T,a) if either

(a) for some L E C, N' E T and L' E a(N'),

ILI=(L' I or

(b) for some N E T, N' E TN,

L E a(N) and L' E a(N')

ILI=IL' 1.

Notice that condition (2a) generalises the clash restriction.

Theorem 1.13.2 below allows us to infer that a

-?00

derivation 0 1 is minimal if it lifts a minimal ground

derivation (D.

Theorem 1.1 .2. Ifs' = (T',c') is a semi-contraction

of 6) = (T,c) and if 6) is minimal then & is minimal,

Proof. Let * be associated with the semi-contraction
ti (}' of () . (,D is a minimal ground derivation. It is easily

verified that 0j' is a semi-contraction of with mapping

By 1.13,1, is a ground derivation, contracts 6 with

mapping * and, for some A and all N e T' , c' (N) /\ C c (tN)) .

It suffices to show that 45v is minimal. If b9 is

not minimal then there exist N,N'ET, N' lying above N.

L' E ' (N') resolved upon at N' in axed L E c ' (N)

such that I LI = I L' I But then 'J^ (N') lies above *(N)
in T. L is resolved upon at t (N') in 0, LA E c('r(Ai } }

and I L,< L',. contradicting the minimality of

Theorem 1.13.2 ensures the compatibility of deletion of

tautologies and of simple deletion of subsumed clauses with

proof procedures implementing; min.i.mality and a resolution rule

Q which is preserved under semi-contractions , in the case of

tautologies, and contractions, in the case of subsumed clauseso

However it is necessary to modify the rule for simple deletion

of subsumed clauses in the following way : Let ''

(C1,9 ...,Cn*...) be a trace for a proof procedure implementing

minimality and simple deletion of subsumed clauses. suppose

that Cn has just been generated* If Cn properly subsumes some

-101 -

i < n, then Ci is deleted. Let the history

n, associated with the derivation of Cn

assume the new value (T,a) where T =
{N0{ and a(N0)

= 0
Similarly if some Ci, i < n, subsumes Cn then Cn is
deleted and the history *i, associated with the

derivation of Ci , assumes the new value (T,a) where

T = {N 0 1 and a(N0) _ .

- 102-

CHAPT] R 2.

Chapter 2 is concerned primarily with the application of

semantic tree constructions to obtain completeness theorems

for resolution inference Systems (see [43] and [17] }

These applications are limited to the first order logic

without equality. With the exception of section 2.5 most of

the results of 2.2 - 2.7 were obtained in collaboration with

P.Jo Hayes and were reported in [17] . Section 2.5

establishes the de3uction completeness theorem proved by

Slagle, Chang and. Lee in [52] . A somewhat weaker

theorem was proved independently by the author and was

presented in [20]. The completeness theorems of 2.3 -

2.6 improve those reported in [51,] , [17] and [52]

by imposing the minimality restriction on derivations, In

section 2.8 we irrrestigate clash-like sequences of binary

resolutions (pseudo-clashes) which are then applied in 2.9

to establish the completeness of a modification of p1-

deduction (reported in [f'7]) which is more efficient

than either P1-deduction or hyper-resolution. Section

2.10 establishes the completeness of maximal pseudo-clash

resolution. The analogous theorem fails for maximal clash

rasolutione

a'A Herbrand Into rotations,

We recall that the intended interpretation of a clause

is the uni-*ersal closure of the disjunction of its elements,

Sets of clauses are interpreted as conjunctions of their

elements. We assume acquaintance with the fact that a sot of

clauses is satisfiable if and only if a corresponding sot of

clauses is satisfiable. A readable introduction to the

necessary preliminaries is Davis' [71 . This

section is concerned with establishing the definitions and

propositions necessary to reduce the study of the semantics of

sets of clauses to the study of Herbrand interpretationso

Given a set of clauses S, the Herbrand universe of S,
c}round

H(S), is the set of allAterms constructible from the function

letters which occur in S (augmented by a single constant if
Sa contains no constants). The Herbrand base of S, H(S),

is the set of all ground instances over H(S) of all atoms

which occur, in clauses of S. i.e,
n
H(S) = (' u J0 s e C E S, 4,T=- t1,/x1,...,t/xn
tie H(S) and f, L f C3' is a ground atom } .

(In the sequel, when a set of clauses S has been fixed and

C c17 is said to be a ground instance of C E S, it will be

understood that the terms ti of C3` all belong to H(S) . ' o to

that if S is a finite sot of ground clauses then H(S).is finite

although H(S) may be infinite.

If K is a set of ground atoms then a set of literals <1

is an assignment to K if

-- 104-

(1) L E Ca implies I L E K , and

(2) L CQ implies L A 0-

An assignment C to K is complete if
(3) L K implies L E QZ or L E C?.

Given a set of clauses S a complete assignment 0 to

H(S) is called a Herbrand int etation of Sd Any

Herbrand interpretation & of s determines an interpretation of

S in the usual sense as follows:

(1) H(S) is the universe (domain) of the interpretation.

(2) The denotation f* of f, a function letter occurring

in S is given by: f*(t1,...,tn)= f(t1,...tn),tiE H(S).

(3) The denotation Pte' of P. a predicate letter occurring

in S is given by: P* (t19 ..., tn) if and only if
P(t1,...,tn) E 4X e

Notice that P(t1,...,tn) in (3) above, need not belong to

H(S). As a result if S is a finite set of ground` clauses and

H(S) is infinite then the interpretation corresponding to Ce is

infinite. It is the interpretation given by (1) - (3) above

which we have in mind when we refer to a clause or set of

clauses as being satisfied by a Herbrand interpretation.

Given any interpretation M of a set of clauses S we

denote by M V- S the relation of M satisfying S. If S= { C1

then we ai<o write M F C. 'We let the symbol -7 denote

lcgical negation

Proposition 2.1 . i ./

- 105 -

oosition 2.1.1. Given a set of clauses S and a

Herorand interpretation 11 of S

() M 1= S if and only if m C C O- 0 for al1 ground

instances C O' of a clause C E S.

(2) M (-r S if and only if C o- C M for some ground

instance CO-of a clause C E S.

Proof, It suffices to prove (1) since (2) is just the

^ontrapositive of (1). Suppose M = S then MV- C for all
C E S. But then M r C C-r" for all ground instances C Cr of C

(since C is interpreted as universally quantified and the domain

of M is H(S)). M Co implies that M { L} for some L E

C Cr- and therefor. e implies that m fl CCr" = { L I T 0 .

Conversely if m n c ar / 0 for all C E S and for all
ground instances CC- of C then M C and therefore M S.

Pro osition 2 I Given a set of clauses S and a Z:. o

model.M of S (i.e. M*S) there exists a Herbrand model Mt of

S (ie. MY -S) .

Proofs Note first that if S contains an individual

constant then every t EH(S) denotes some element t* in the

domain of M. If S contains no such constant and b is the

constant symbol introduced into H(S) than let b* be some

arbitrary element of the non-empty domain of M. Then in

this case as well every t E H(S) denotes some element t* in

the domain of 14.

If L EIl(S) then L=P(t,ly..d,tn) for some P occurring in S

and t1 b o . 9 to E H(S). But then L? = P* (t' ... t, tri) is either

true or false in M where P* is the predicate in M denoted by P®

f.
Let M? be the complete assignment to H(S) where for all L E

H(S)

L E M' if and only if L* is true in M.,

L e Mt if and only if L* is false in M.

Suppose M V S and L1' F -i S. Then C Q" C
M' for some

C E S and some ground instance C Cr of C e But then L E Mt

f or each L E C 0- and theref ore each such L* is false in M.

If C= C(xi9...Pxn) and C 0 = C(tI,...9tn) then, since

C*(-bI*y.@.yt*) is false in M9 C is also false in M and

M F -S.

Corollary 2Z1.3. A set of clauses S is unsatisfiable if and

only if S has no Herbrand models.

Proposition 2.1 .4a Lot S be a set of clauses and S' an

unsatisfiable set of instances of clausea in S. Then S is

unsatisfiable.

]Proof. If S is satisfiable then M S for some Herbrand

model M of S. But then M (CO 0 for all C E S and all

ground instances C 0' ® But each ground instance C'O'' of a

clause C t E S' is a ground instance C O of a clause C E S

,,ore C' = Ce and O-= eO-') . Therefore M(C' 0'' 0 1

for each ground Instance C' 6'' of each C? E S' and therefore

M' is a Horbrand model of S' where M' C M is the subset of

M which is a comple'be assignment to H(S').

- 107 -

2o2 Semantic Trees.

The notion of a semantic tree was introduced by Robinson

in [44] 1CO obtain extensions of resolution for first-order

logic with equality. The semantic trees studied below are,

however, limited to first-order logic without equality.

We extend Robins on's original definition of failure and concorn

ourselves more with establishing specific applications than

with extending the general theory. Further research on

semantic trees is reported on in Robinson's recent over-.view

of the orem-proving [461.

Let K be a set of ground atoms, T a tree and Cp a

function defined on nodes of T having assignments to K as

values. If X is a subset of T let a7(X) = { Q(N) : N E X }` b

Then _ (T, 62) is a semantic tree for K if
(11) a- (NQ)= 0 for N0 = r (T) ,

(2) 0-(s(N)) C 62(N) for N r (T),

(3) ((1) 1.s a complete assignment to K for 6 a.

complete branch of T and

(13) for N E T such that s-1 (N)= { N1,..+?Nn }

B1 V o o. V Bn is a tautology where Bi is the

conjunotio4i of tllGr literals in CQ(Ni)- W (N).

Note that because our convention of considering trees as

growing unvvard, the orientation of semantic trees in this

paper is opposite to their orientation in [17] . If
K = H(S) for some S then (,((* is a Herbrand interpretation

of 3 if 63 is a complete branch of a semantic tree for K.

103 -

That conversely for every Herbrand interpretation M of S there

exists a complete branch of £ such that G2(03) = M is

a consequence of the following

Proposition 2.2.11 . If 8 = (T, OZ) is a semantic tree

for K and. M is a complete assignment to K then M = (. (63}

for some complete branch l3 of

Proof. Given M construct 3 as follows: r(T) e

If N e 6 and s-1(N) = { N1, ...,Nn { then since E is an

interpretation of
B1

V ®.. V Bn, where Bi is the conjunction

of the literals in LT (Ni) - CA(N), and since B1 V ... V Bn

is true in M. some B. rlorooveris true in M and therefore each

literal in (,Q (N.) .. q(N) is true in M. So (. (N.)- Q(N) C: Ma

Let Ni e 6 . If (3 is the complete branch of T defined in

this way then J (3) C M. But M C and

M= QZ (t'3) since CZ? (6) is a complete assignment to K.

Clash Trrees. A semantic tree 8 = (T, c) for a set

of ground atoms K is a clash tree when for any N E T,

s-1(N) = { N19...,Nm+1I implies that

(Ni) = (N) U { L{ , 1 i m and

(Q (N
m+1} (N) U. {L1,,m.., Lm

for some L1,...,sm such that L1 I,..., I Lm) E K.

The nodes N1 ,...
Nm

are satellite nodes and m-1 a nucleus

o e of All of the clash trees investigated in this

paper will be one of the two following kinds.

B1*_1a... Semantic Tree for Ordered K. Let K be a

totally ordered (Finite or infinite) non-empty set of ground

109

atoms, K= { L1, ...,Ln, . *. where i < j implies that Ai

precedes A in the given ordering of K. The binary semantic

tree = (T. CP) for K ordered in this way is given by:

(1) a(r (T)) = 0 0

(2) If N E T and&(N) is a complete assignment to some

K' C K then

(a) If KT = K then s-1(N)= 0 , otherwise

(b) If K' = {Li2Li+1,...Ln,.e.} then

p1 s (N) =I N1,N2} for some N1 , `,2 e T and

LT (Nt) = J (N) U { Li}` 4'(N {Li}

Note that if K' is an initial segment of K and if M' is a

complete assignment to K° then M' = tk(N) for some N E T.

MClash Tree for K. i Lot K be a finite set of ound

atoms and M a completo assignment to K, then the -M-clash tree

) for K is defined by:

(1) (r(T)) = 0 .

(2) if N e T and CQ(N) is a complete assignment to some

K3 C K then

(a) If K' = K then s-1(N) = 0 otherwise

(b) (Q (N) C M. Let M - CA(N) = {L1,..#fLm'

Then s-1 (N) _ { N1 , ...Nm,..,) for some N,,, . Q.,NM e

and 12 (Ni) _ (,Q (N) U {Li} for I'< i < ms

(Nm+1) = r (N) U { L1, ...hm}

We need to verify that given K and N the M-clash tree for K

actually exists. For this purpose it suffices to verify that

C((N) C M whenever CLA(N) is a complete ass'dgnment to K' C K.

- 110

Suppose this is not the case, then because T is well-founded

there exists a lowest interior node N0 such that 0- (N0) M

(i.e. &,(,,1) M and 0 (s (N0)) C M). N0 A r (T) since

QZ (r (T)) C M. But Ql (s(N0)) C M implies that either

(N) = fQ(s(NO V {Li} , for some LiEMa-(N),or

fQ(No)=s(N©)) C {La®®.yLm}' for M- .(N)

{LI90$PLmI

Tn the first case 6Q (NO) C M, in the second case KJ = K. It
follows that the M-clash tree for K does in fact always exist.

Note that if KV C K and M' is a complete assignment to

KI then M° = 0 (N) for Nome N E T.

Failure. Let 8= (T, 0) be a semantic tree for some

set- , of ground atoms K and let :1 be a set of clauses. A

clause 0 E S fails at N E T, if Ccf` (N). Note that

(1) C fails at r(T) if and only if C = q .

(2) If K = H(S), 63 is a complete branch of 4 and

C fails at N E 63 , then CQ(63) i ' G.

(i) If C fails at N then C is not a tautology. (If C

were a tautr7.ogy and Ca" -C M (N) then C o-

would be a tautology and (Q (N) would contain

complementary literals.)

C-) If C fails at N then C subsumes the clause GF N .

C E S fail r. openly at N E T if C fails at N and either

N: r(T) or C does not fail at s (N), A node N c T is

free for S if no C e S fails at N. A node N E T is a

failure point for S if some 0 E S fails at N and either

- 111 -

N = r(T) or s (N) is free for S. If N E T and TN is the

sub cree of T rooted in N E T then a cut X through TN is a

frontier oa.' TIC for S if every node in N is a failure point for

S. This closed for S if some cut X through TN is a frontier

of TN f ox° S. If N= r(T) and TN is closed for S then we also

say that is closed for S.

Proposition 2.2.2. If TN is closed for S then TN is

closed for some finite set S r of ground instances of clauses

in S .

Proof* * Let X be a fronti exr for S. X is finite by 1 o7.4.

For e ach N E X let C'N be some ground instance of a clause

C E S which fails at N (ieee C'N= C e- where C 0 C d7 (N)).

Then S' C'N N E X $ is finite and X is a frontier

for So

Procosition 2.2. . If some semantic tree (T, CQ)

for some K is closed for S then S is unsatisfiable.

Pro oi. Let KI = K n H(S), and let M be a Herbrand

interpretation of S. Let 1.11 C M be the complete

.assignment to K' contained in M and let M" be any extension

of M I to a complete assignment to K. Then M" = CR (63) for

some complete branch cf T. Since 9j is closed for S.

C C Q (63) for some ground instance of a clause

C e S. But then C o- C M' C M. so C and therefore S is

false in M. Because M was an arbitrary Herbrand interpre-

tation of S, 3 is unsatisfiable since it has no Herbrand

models

- 112 -

Proposition 2.214. Let S be unsatisfiable and let 'J

(To 0-) be a semantic tree for H (S). Then 8 is closed

for S.

Proof., We need to :show that some cut through T is a

frontier for S or equivalently that every complete branch

3 of T contains a failure point for S. Let 6 be such a

branch then the unsatisfiability of S implies that QZ (45) J -' ;'
i .e. C o- C G2, (B) for some ground instance of some

C E S. Since (3 is well-founded either r(T) is a failure

point for S or there exists a node N E t3 such that some

C E S fails at N but no DES fails at s(N). In either case

contains a failure point for S.

Cor olla 2.2-5 y (Herbrandts Theorem). If S is

unsatisfiable then some finite set S2 of instances of clauses

in S is unsatisfiable.
.

Proof. Let 8 be the binary semantic tree for H (S)

ordered iii some way0 Then 8 is closed for s and is

therefore closed for some finite set St of instances of

clauses in S. It follows that Sf is unsatisfiable.

2.3 Semantic Trees and Derivations.

Let 8 = (T, c) be a semantic tree and S a set of

clauses, NET is as inference node for S if s-1(N) is a set

of failure points for S.

Proposition 2,3-,,, If (T, 0-) is a semantic tree

and TN is closed for S where N 6 T. then either TN contains

an inference node for S or some C e S fails at N.

Proof,, If no C E S fails at N and X is some frontier

of TN for S then by 1.7059 since X, N1,
s-1 (N') S X for some N' E TN But then N4 is an

inference node for S.

The following theorem and its first corollary provide

the basis for two methods of applying semantic trees to

establish the completeness of resolution inference systems.

Theorem 2.3.2. Let 8 = (T, CC) be a clash tree and

lot TN It N0 E Tg be closed for a set of clauses S. Then
0

there exists a derivation (g) = (T'9c) from S of a clause C

which di.ls at N0. There is a 1-1 mapping '{": T' -i TN such

that

(1)

0

If N E T'is a tip then c(N) e S fails properly

at (N) and (N) is a failure point for S in TN

0

(2) If N e T$ is an interior node then 4^(N) is

Interior to TN If e is the clash c(s^1(N)) at
0

N with resolvent c (N) then

(a) is restricted.

(b) the satellites of i. fail properly at

satellite nodes of sr1((N)),
(c) The nucleus of fails properly at the

nucleus node of S-'(t (N)),

(d) c (N) fails at 1° (N) and

(e) If A e (,a fails properly at N' E

a (" (N)) and A o- C M (N') then

LEA

(3)

(4.)

is resolved upon in C if and only if
r Cr- C Q (N') -- (Q (N) .

No o(N), for N E TIP is a tautology.

6) is minimal.

Proof. Let X be a frontier of T,, for S. Let QD

(TN /X, e') be the ground derivation defined by c' (N) N

0
for all N E TN /X. The definition of clash tree guarantees

0
that if N is interior to TN,X then c' (8-1(N)) is a restricted

0
clash with resolverit c'(N). Thus 0 is a derivation. The

conditions on assignments that they contain no complementary

licerals implies that ®' contains no tautologies. The

condition that Q2(s(N)) C G(N)2 for N interior to T,

implies that (J' is minimal.

For every tip N C TN/X (i.eo for N e X) let AN E S

0

be a clause which fails at N (i.e. , F- C 0 (N) for some

o--). Then AN subsumes c' (N). Let S' = { A.: N E X I

be standardised. By the contraction theorem there exists a

derivation D = (T', c) from S' and therefore from S of a

clause which subsumes c' (N0)0 i.ee of a clause which fails

at N0. 0 is a contraction of (D' and therefore Qj contains no

tautologies and is minimal. If `*' is the mapping

associated with the contraction then (3 satisfies properties

(1) and (2) of the theorem.

Corollary 2 . . Let J ^ (T, Q1) be a clash tree

and let N0 e T be as: inference node for S. Then there

exists a clash , such that each clause in e is a variant

115

of a clause in $ and

(a) e is restricted,

(b) the satellites of u° fail properly at satellite

nodes of s-1 (N),

(c) the nucleus of 0, fails properly at the nucleus node

(d)

(e)

of sy1 (N),

the resolvent C of e fails at N.

if A E e, fails properly at N9 e s-1 (N) and.

1 a- a(Nt) then L E A is resolved upon in Q.

if and only if L o-- C ((Nt) - CF(N) and

(d) neither C nor any of the clauses in e, are

tautologies.

P.roof. TN is closed for S. The corresponding

derivation (bt of a clause -which fails at N consists of just

the single clash C
.14. If S is unsatisfiable then there exists oroll2Ev

a minimal binary refutation of S containing no tautologies.

Proof. Let 8 =(T, CQ) be the binary semantic tree
n

for H (S) ordered in some ways Theorem 2.3.2 guarantees the

existence of a minimal refutation 6) of S containing no

tautologies. Since s-1 (N) contains exactly two elements for

N interior to T, 09 is binary.

A theorem similar to corollary 2.3.4 was proved by

Loveland in [23] for the case of ground sets of

clauses S. In section 206 we shall see that corollary 2.304

can be strengthened by introducing the notion of CK-ordering

in order to make use of the ordering of H(S) in the proof of

2 03.?.

2 It M-Clash Derivations.

Let S be a set of clauses, M a Herbrand interpretation of

S and e a clash with satellites J ,,..,An, nucleus B and

meg.s,u. 0' . Then ' is an M-clash If
(1) 11.1 d` ,..`r - An e and C are false in M,

(2) DES and B & has an instance B e X true in AT,,

{ L: L@ A E B@ A n MI is the subset

of literals in B resolved upon in

(3) C is restricted.
A clash derivation (0 is an M-clash

U' and

derivation if each clash

in d) is an M-clash, The definition of M-clash introduced 'by

Slagle in [51 J is less restrictive and is generally

easier to apply, Conditions (1) and (2) above are replaced

by

(17) A1, ,,A and C are false in M and

(2$) B has an instance true in M.

The following theorem is a third corollary of Theorem

2a3.2, Because 2.3.2 was proved by applying the contraction

theorem, the proof of Theorem 2.1..1 is equivalent to a proof

that 11-clash derivations are preser'ed under contractions.

Theox-,;-,. _g.4 ,*I,, Let 9 = (T, CX) be an M--clash tree and

let TN
-' N©

E T, be closed for S. Then there exists a
0

minimal M-clash deri'v'ation m t = (T t 9c) from S of a clause which

-- 117-

fails at N0. 4)' contains no tautologies.

Prof. Lot' = (TI.. c) be the minimal derivation

containing no tautologies of Theorem 2.3.2 corresponding to

TN . Let t ; ' T' 'T,
N

be the associated mapping. It
3 0

suffices to show that if N e Tz is interior to T' and if

C = { &I 9 o o s ytin9 B} is th4 clash at N then C is an

M-clash.,

Let N7 (N) o The satellites Aj a ... ,lln of

fail properly at satellite nodes Nj t i... 9Nnt of s-1(Nf)

and. the nucleus B of 0 fails properly at the nucleus node

N?
n+111

of s~1(N'). Since C is standardised there is a single

substitution such that

Aiv- C CQ_ (Nand c (n+'1')
But then cr- unifies e and therefore o = &/ for some /.

where ID is an m.g.s.uo of C . The resolvent C of

fails at N' which is a satellite node of 8. Thus .&&Q ,...,ono

and C fail at satellite nodes of o But if a clause D

fails at a satellite node N" of then for some substitution

s D /\ C cQ (N"`) C M. i.e. D is false in M.

B 9 C 0 (10 n+1 and L E B is resolved upon in C if
and only if

175 A, C CQ (Nn ,)-UN') C i.e. if and only

if
L a/ B C1 M.

The instance B' e 1K of B is therefore true in M. Since

Nn, is a tip of T0, B e S. 42- is restricted and

- 118 -

therefore .. is an M-clash and Q) is an M-clash derivation.

Core 2.4.2. If S is unsatisfiable and m is a

Herbrand interpretation of S then there exists a minimal

M--clash refutation of S containing no tautologies.

Proof. Let S' be a finite unsatisfiable set of ground

instances of clauses in S and let K be the finite set of ground . n
atoms occurring in clauses in S'. Then K = K (S') C R-(S)

and some subset Mt of M is a complete assignment to K.

Since St is unsatisfiable, the M'-clash tree 3 = (T, 'V) for

K is closed for St and is therefore closed for S. By 2.1..1

(setting NO=r(T) and MI be the M of 2.141) there exists a

minimal Pd ..clash refutation 0) of S containing no tautologies.

But since Mt C M, is also an M-clash refutation of S.

Remarks.

It is the existence of TM?-clash derivations satisfying

conditions (1) and (2) rather than (1t) and (2') which is

necessary to justify the completeness of extending 14-clash

resolution to systems which employ factoring. If (St

I A.1,...,An9 B I is an 11-clash with resolvent C and

m.g.s.u' ® then there is a set of factors C. ' _ AI ..
An', B'} with resolvent C and m.geseu. ®t where

Ai Ai @i , B' = B 0n+'1 and

n+1

The clash is restricted, each Air ®t = Ai 61 is false in M

and B' &' =B& has aa instance Bt 4 1/ true in M. The

literals L' E Bt resolved upon in t S are precisely those

- 119 -

j h .. L' O f A E Mw ThusE j is an M-clash literal s f<, whc

with resolvent Cm

(2) M-clash resolution is a theoretically interesting

resolution method. Its potentiality for efficient theorem-

proving however seems quite limited. To implement M-clash

resolution for a given Herbrand interpretation M it is

necessary to find efficient procedures fcr determining both when

clauses are false in M and when clauses have instances time in

M. Such procedures exist forvery few Herbrand interpretations.

For example' suppose that S0 is a set of clauses repres-

enting the axioms for group theory and the negation of some

proposed theorem. Suppose that 1110 is some finite group of

small cardinality. First it is necessary to extend M0 to a

Herbrand interpretation M by introducing denotations far

the Skolem function symbols of S© It is then necessary to

provide an algorithm for deciding when instances of clauses C

over H(S0) are true or false in M. In most cases this will

have to be done by enumerating all ground instances of C and by

individually deciding the validity in M of each such instance.

This process will in general be a very lengthy one even for

models M0 of small cardinality.

(3) Perhaps the most interesting use of M-clashes is for

establishing connections among hyper-resolution [40]

renaming [25] and set of support. As noted by Slagle

[51] all of these resolution methods are examples of

M-clash resolution.

- 120 -

Hyper-resolution is obtained by choosing as the Herbrand

interpretation M, for a given set of clauses S0, the set

M= H where H= H(S0). Although M is unually infinite, this

case of M-clash resolution is especially easy to apply since

a clause A is false in M if and only if it is positive. A

clause B has an instance true in M if and only if it is non-

positive; precisely the negative literals in B are resolved

-xpon in any M-clash (hyper-resolution clash) . containing

B as nucleus.

Let _l.,, { P1,...,PnI be the set of all predicate symbols

occurring in a given set of clauses S0. Let ..t= { P1 s...Pm},

0 < m < n;, be a subset of J and let

M= { L : L E H(S 0) and L=P1(tI ,...t }}, i < m}.

O n 1
U { L : L E H (S0) and L=Pj(t1,...tni), m< j <. n{.

Then M is a Herbrand interpretation of S. In this case

M-clash resolution is equivalent to hyper--resolution after

renaming, ice. after replacing in SO each literal L e C E
SO

by L when L = Pi(s1,...ysn) and PiE J\

S, y Given a set of clauses S0 and a satisflable subset St c:

let M be a Heabrand model of St. Then the satellites and

resolvent of every 111-clash C, = {A,, ..,A n ,B } are false
i

in M and therefore do not belong to St . Since .'. is

restricted the resolvent C of L,,° can be obtained by resolving

a sequence of binary clashes C1,..., e where C1=

{
'1,B}

and for 2 < i < 1, C-i = { A1,Ci-1 } where 0 i-1 is the

resolvent of ei 1 (see section 2.8 below). The resolvent,

121 -

of , is C and no two clauses from St are resolved together to

obtain C. This last condition that no two clauses from S'

are resolved in a binary clash can be interpreted as the

definition of the set of support resolution method.

Deduction Completeness.

Much of the efficiency of resolution derives from the

fact that it is not a complete rule for deriving logical

consequences. More precisely, given a set of clauses S0,

the process of searching for a refutation of S0 is accelerated

gay nou generating certain of the logical consequences of S0

along the way.

Theorem 2.5.1, which generalises the subsumption theorem

of [20] and the deduction completeness theorems of [52]

prov:+.des information about the extent of deduction completeness

for resolutions Theorem 2i,5.1 is used to establish the

permutatic.: theorem of Chapter 3
Theorem 2.51. Let S be a set of clauses, S , and

C a clause which is not a tautology, logically implied by S.

(1) There exists a minimal binary derivation 01 from

S of a clause D which subsumes Co

(2) If M is a Herbrand interpretation of S and if C is

false in M then there exists a minimal M-clash

derivation (D. from S of a clause D which subsumes Co

(3) Neither tD 1 nor Q)2 contain tautologies.

Proof If S logically implies C, then S U -I C is

- 1 2 2 -

u n s a t i s f i a b l e . Let C = IL , (x, 9 ... 9'n) s .. (xl $...9xn) I

where x1p o. oxn are all the variables occurring in C sand.

Li(x1 9.o.9xn) indicates all occurrences of these variables in

Li E C. - C is logically equivalent to 3 x1 s ..,xn
(L1(xl 9...9x n) & ... & ,m(x1,q®.sxn)). Let al9...an be

constant symbols not occurring in S U -¢ C and let C)*

{ {L1(a, g...,an)} y...y {Lm(a,9...9an)} }

then S0= S U (-,C)* is unsatisfiable.

(1) Let a = (T9 (Q) be the binary semantic tree for

H(S0) ordered in such a way that the atoms IL1(aja...an)I ,

90009 Ixm (ai8...,a11)I precede all others in the ordering

A
of H (SC). Them, because C is not a tautology there exists a

node N E T such that CT (N) = U (-7 C)*. TNis closed

for S0 unless some clause D E S0 and therefore D E S

fails (improperly) at NQ In this case let D =(Tt,c)' where

T' = { NC{ and c (N6) = D. If TN is closed for So then it
is closed for S since no clause in ('' C)'w fails in T,,,)* In

this case also, by Theorem 2.3.2, there exists a minimal

binary derivation 0) of a clause D which fails at N. We

shall show that any such clause D subsumes C. But first:
(2) Let C be false in M. Then -C/-, C M for some

ground substitution /, = { t1 /X1 9...9tJxI where ti e

H(S). Ex+end. M to a Herbrand interpretation M* of S
0

by

defining

L (a, , ..r n) E M* if and only if L (t19 ... 9 tn) E Al and

L (a,,.*,,An) E M* if and only if L (t1 y...;tn) E M.

-- 123 -

M* contains no complementary laterals and contains either L

or L for each L E H(SC) Therefore M* is a Herbrard

interpretatioiz of SC and PI C M*. Note moreover that

C (C M implies that U (--r C)* E Tom.

Let St be a finite unsatisfiable set of ground instances

and let M' C M* be the subset of M* which of clauses in S p

is a complete asrignnent to the atoms occurring in clauses

of SQ Let _ (T, CQ) be the MT-clash tree for SC'.

is closed for Spy and therefore for SO. Since C is not

a tautology, 4-7(N) = U (- C)* for some N e T. Either

some D e S fails at N or TN is closed for S. In either

case there exists a minimal M'--clash derivation 6) =(Te, c)

from S of a clause D which fails at N. ;) is also an M*-

clash derivation of D since MT C M'.

Thus each satellite and resolvent of a clash in O)

is false in M* and each nucleus has an instance true in M*.

But no clause A = c (N'), T?' E T', contains any of the

constants a1,...,an. If o-* is a ground substitution all of

whose terms belong to H(S0) let c- be the ground substitution

which differs from a-* by having the term ti whenever a-` has

a1. Then

.a a- * C II* if and only if A a- C M and

A r r - * n P, * , if and only if A a- fl m - .

Thus each satellite and resolvent in 6) is false in M and

each nucleus in 0 has an instance true in M and therefore

is an M-clash derivation of D. (For M-clashes as

12 14r

by (1) and. (2) instead of (1t) and (2t) in suction

2.1+ a slightly more detailed argument along the same lines as

above is needed)

(1) and (2) concluded: It remains to show that if a

clause D fails at a node N, where GQ(N) = U (-7 C)*o then D

subsumes Ca But

D e° * C 0(N) = U (-i C)* for some o- 'e

Let o-- differ from d- * by having xi whenever a-* has ai in any

of its terms, for each j, 1 < i < n.. Then D cr C IL1(x1,,.., n)
,us.Lm(x1,..®,xn)} , i.e. D subsumes C.

It should be noted that Theorem 2.5.1 does not settle the

problem of generating consequences from assumptions by

resolution. That this is so is due to the fact that if A and

B are sentences of first-order logic, if J. implies B and if
J and B* are the sets of clauses corresponding to .L,. and B,

then it is not generally true that A1* implies B*m i. _

-3y V x Pz,y) and. B V x 3y P(x,y) provide a sample

counterexample.

2,6 ex-prderin and Bina Resolution.

Let S be a set of clauses and < A a total ordering of

H(S). (Write L1
<11L2

for L1 <
A

L
2

and not L2 < L1

The notion of .L-restriction, which extends Slagle's definition

[51] , proviCes the basis for studying the completeness

of the more effective restriction (called A-restriction in

[17] and at-restriction in [20]

a., 1'25 ->

Let 0 = (T,c) be a derivation and let N e T, N ,A r(T).

Then c(N) satisfies the striction if

I L® A I >> I LteX I for some , for L e c(N)

resolved upon at N, for L' E c(N) not resolved upon,

at N and for e m.g.s.uo of the clash at s(N).

The weaker restriction that

I L a - I > A ILt o
1

for some cr-, for L e c(N)

resolved upon at N and for L' E c(N) not resolved upon

at N

(as in the case of the corresponding weakening of the M-clash

rule) is not sufficiently restrictive to justify extending

L,-restrictions to clashes of factors (compare remark (1) section

2.4).

The following theorem translates the ordering for binary

semantic trees into A.-restrictions on the corresponding binary

derivation. The second half of the proof of 2.6.1 is

equivalent to a demonstration that o(-restrictions are

preserved under contractions.

Theorem 2.6,1* Given S unsatisfiable and I& a total

ordering of H(S) there exists a minimal binary refutation

(T,c) of S such that 6) contains no tautolouies and,

for all N E Ty N A r(T), c(N) satisfies the .L-

restriction.

Proof'. Let S1 be a finite unsatisfiable set of instances

of clauses in S. Then H (at) C H(S) and L. totally orders

S ? . Let = (T 1 00) be the binary semantic tree for H(S
1
) ^

-126-v

ordered by A. Then 8 is closed for St and therefore for

so

Let 0) = (T,e) and "; T T' be as in Theorem 2.3.2

where N©= r(T'). Then 6) is a minimal binary refutation of S

containing no tautologies. Let N e To N r(T). Then

C = c (N) fails properly at some node N' a s-1("'(s(P;}},

Nt e Tt. Therefore C a- C 0. (N') for some ground

substitution o- . If L e C is resolved upon at N and

L' e C is not resolved upon at N then

IT o- (Q(N1 - Q2(s(N')} and Lt e C_(s(Nt}}+

But by the construction of >A } t o !

i.e. ! L or- ! <A ! Lt '6"°! . But o- &, for some X

where e is an m.g.s.ue of the clash at s(N). Therefore

c(N) satisfies the A-restriction.

In general 4-restrictions may be very difficult to verify,

What is wanted is a notion of ordering and corresponding

restriction which applies directly to literals occurring in

clauses of derivations instead of to literals occurring in

ground instances of such clauses. The P-orderings of

Slagle [51] meet this requirement and are particularly

easy to apply.

Given a set of clauses S and PI ,...,pn and ordering of the

predicate symbols occurring in S, let the partial ordorirg

< of H(s) be defined by

L < PL' if and only if L = Pi(t ,...,tn+} and

L' = Pj(t1,.eo,tn) implies 1' < i < j < k.
J

HCS) is -the set Of a.tl cctt, s o6atned y ns4Ktlalnq b
WLC4rl$ sf t ,J 5ct,S-(-- 1'_ucktan.3 -b& cito mp&- fo rw &tk@ occ. sq Ih s.

The partial ordering <P is called a P-orderin for S

The P-rest:+:-iction corresponding to a P-ordering <P is

defined as follows: Let (D= (T,c) be a derivation and let

N E T , N A r(T). Then c(N) violates the P-restriction

if

I L I <P I Lt I for L e c(N) resolved upon at N and

Lt E c(N) not resolved upon at N.

Otherwise c(N) satisfies the P-restriction. Given a

P-ordering and a clause C there may be several litorals L in C

why.ch contain the same predicate letter and such that L >PLr

for all Lt E C. In this case the P-restriction imposes

no restriction on which one of these literals L are to be

resolved upon when C occurs in a clash.

The notion of O *restriction includes the ease of

P-restriction and allows a stricter limitation of the literals

which can be resolved upone Let < be a partial ordering

0
of H(S) then , is an ordering for S, if for any L1,L2 E

a
H(S) and for any substitu tLon tr-

L1 a L2 implies L
1
0- <a L2 a-

Let = (T,o) be a derivation and let N E T, N r(T).

Then c(N) violates the -restriction if

I L e I < IM t 8 for L E c(N) resolved u--)on at N

for Lt E c(N) not r esolved upon at N and for &

M.6. 3.U. of the clazh at s (N).

Otherwise c(N) satisfies the cat-restriction.O or;terings. can

often be convoniontly represented by finite sets of inequality
schemes.

-128®

&ama?les.

(1) If the atoms P(a), P(f(x)), P(g(y)) and Q(y) or their

Complements occur in a set of clauses S then the inequalities

P(a) <a P(f(t1)) <
CK

P(g(t2)) and

P(t1) <
CX

Q(t2), for all terms t1 and t2,

determines ancX ordering for S. If C= {F(x),P(a),Q(f(x)) }

then the cK--restriction for C implies that Q(f(x)) may not be

resolved upon in C. If C= {P(f (x),F(a),Q(f(x))} then only

P(a) may be resolved upon in C.

(2) The condition,

I-(t) << P(f(-t)), for all terms t, imposes antic-ordering

for any set of clauses containing P and fe However the

condition

p(t1) <0 P'(f(t2)), for all terms t1 and t2, does not.

(Because P(t1)< P(f(t2)) implies that P(f(x))<(f(x)), which

violates the reflexivity of partial orderings).

(3) In systems which incorporate the use of marked

factorsC(restrictions can serve to restrict the generation of

factors of clauses. Let
oC

be the o(-ordering of example (1)

and let C = { P(x)9P(f(y)), P(g(z)) { e Then C has a total of

5 marked factcars (3 of them i-factors). Only 3 marked

factors of C are compatible with theC(restriction.

Lemma 2.6.2* Given a set of clauses S and SCC ax_

A

O(-ordering for S, there exists a total ordering A oP H(S)

such that for any derivation ()= (T,c) from S. for any N C T,

N A r(T)..

- 12a-

c(N) satisfies the m -restriction if and only if
c(N) satisfies the A-restrictions

Proof Given S and < there is at least one total
A

ordering < A of H(S) which is compatible with E
Ce

i.e,, such

that

L <A L' whenever L <CK L' and L, L' a H(S).
A

(Just extend the restriction of <0(to H(S) to a total

ordering of H(S)). Let tD=(T,c) be any derivation from S

and let -c(N), N E T. satisfy the A-restrictbn. If c(N)

violates the &,-restriction then

f L 6,1 < I Li G I for some L E c(N) resolved upon at N,

for L' x c(N) not resolved upon at N and for & m.gs.u.

of the clash at s(N).

But then IL ® /(
I o C I L'a1(I for all 4 ahd

therefore IL e Al <A I L' I for all ground

IL9A1, IWAI E H(S)

It follows that c(N) violates the A--restriction contrary to

assumption

Corollary 2.6..3. Given S unsatisfiable and an

c<--ordering for S there exists a minimal binary refutation

e = (T,o) of S such that (D contains no tautologies and,

for all ld E T, N r(T), c(N) satisfies the cc-restriction.

Proof. Let < be the total ordoring of H(S) A

corresponding to < by 2.6,.2G Let 6) be the refutation

of S for <A of M,i. They by 2.6,2 each c(N), NA r(T),

satisfies the -restriction.

-- 130 -

. 0 rderin& and M-clashes

Corollary 2.7.2 was proved by S1agle [51] for the

case of PM-clash resolution. Theorem 2.701 is proved by

modifying Slagle's argument.

Theorem 2.7.1. Let S be unsatisfiable, M a Herbrand

interpretation of S and <A a total ordering of H(S). There

exists an M-clash refutation 47 of S such that 0 contains no

tautologies and each satellite clause in 6) satisfies the

A-restriction.

Proof* Let _ (T, CZ) be an M2-clash tree closed for

S where M° C T,Z. (V exists by the construction in the

proof of 2.4.2.) The proof is by induction on t;he number n

of nodes in T free for S. If n=O then ;l e S and 63 =

(Tt,c), where TI = { N0} and c(N0) = Q , is the

desired refutation of S. Suppose that n > 0 and that the

theorem holds for any St such that 8 is closed for St and

such that the number of nodes in T free for St is less than n.

Let M = { L1 , . e.'L I where I Li' <
A

1 Li I

for i < j. Construct M" C MI as follows:

J,j

0

H9'i+1
= M. if i U

{
Li+1} falsifies some A E S.,

i.ev if 1) a- C M;!!." U { Li+1} for some c" - I
otherwise

M" i+1 =
M" i U

{ L .
+1

}

M" = M" .
m

131 -

M" falsifies no clause in S (since no M"i does). MMtt -
PITY

since MY falsifies some clause in S. Let N E T be such that

(Q(N) = MO. Let s-1(N) N1,°°9Nk+1} where Nk+1

is nucleus.

Nk+1 is a tip of T and therefore (Q(Nk+1) falsifies some

B E S. Moreover B fails properly at Nk+1 since B does not

fail at N. Each satellite Ni, I < i < k ,

failure point for S since

is a

'b

(Ni) -- { L } U M(N) = {L} U M" for

some L e MI,

Thus N is an inference node for S and some set C of variants

of clauses in S is a clash satisfying conditions (a) - (f)

of 2.3.3, Let C be the resolvent of (7, and e an meg.s.u,

of C. , Each satellite A E C satisfies the A--restriction..

Fog if E C A is the set of literals in A resolved upon in Q.

then for some A

.k9A C {L} U M"- for some L=L. E M,

{ L } { Li} and

L' e,. E M' for all LY E .A-Bs

But., by the construction of M"., A may be chosen such that
0

M. U { L. } falsifies A. So if L2 E Y.-E

then L'A E M"
i+1

and therefore Lt9&A = {L
J
.}

for some J< i and I E e K I >A J L ' e A I . So

the clause A in C, satisfies the A-restriction.

Let i0C = (T,co) be the derivation of C from ., i.e.
T©. = {r(T0)} U z '(r (T0))s c0 (r(T0)) =

-132_..

0 0(8 -1(r(T0))) = C o 6)
Q

is an TA-clash derivation containing

no tautologies and every satellite in 0)0 satisfies the A--res-

triction.

Let S' = S V { C I . Then J is closed for S'

and has fewer than n nodes free for Se (since C fails at N).

By induction hypothesis there exists an M--clash refutation

01 = (Ti,c1) of S' such that @1 contains no tautologies

and each satellite in 6)1 satisfies the hr-restriction, Let

(I _ (Tt,o) be obtained from ()0 and 6)
1

by identifying

any tip N of T.. such that o1(N)=C with the root of a copy of

0
. Then 4) is the desired refutation of S o

Corollary 2.7,2. Lot S be unsatisfiable. M a Herbr4nd

Interpretation of S and ,< ano(--ordering for S. There

exists an M-clash refutation 6) of S such that ID contains

no tautologies and each satellite in 0 satisfies the

A-restriction

Proof. By Theorem 2x7.1 and Lemma 26.2,

2.7.2 cannot be improved either by insisting that nuclei in

also satisfy the W-restriction or by requiring that 6) bo

minimal. Lot S = {

L1 sL2{ s { L1,L21 f 'E22 L,1J

{L1 qL2}
{ s M { L1 ,L2{ and L1 <A L2. Then S is

unsati.sfiable but no refutation of S exists having either of

the two properties mentioned above.

2.8 Pseudo-clashes.

For a variety of reasons it is usually desirable to

1'33 -

reduce the problem of searching for clash refutations to the

problem of searching for binary clash refutations (goo e.g.

section 2G9). This reduction, w}:ioh can be obtained for

restricted clashes, is investigated by introducing the notion

of pseudo-clash. In section 2.1O we prove the completeness

of resolving maximal pseudo-clashes (the corresponding

completeness theorem fails to hold for maximal clashes.)

Let C be a standardised sequence of clausE:s

(A1 y ...,A.n, B)
.

A i = E U A0i

B = 'FI U

For 1i < i < n, let

Fi A 0 ,

Fn U BO = Fi s

Let COB and suppose { 1.i+
S

Ci}

C i+1

is a clash with resolvent

(0 -< i < n.»1) whero the literals resolvred upon
n

in Ai+11 are Eand in Ci the descendants of Fi+1. Then

is a rPudo-clash on F o» with resolvent C=Cn. The

clauses Al p.a.,An are the satellites and B the nucleus of
n n
C . is restricted if none of Cj....o$Cnw1 are tautologies

when none of L1,...p1'dn0 B and C are tautologies. A

derivation 0 = (T,,c) is a 2 eudo-clash derivation if
s(N) 0 implies that some sequence e consisting of the

clauses o(s"1(N)) is a pseudo clash with resolvent c(N).

heuarks

Cl) To every p,,eudo-clash C there corresponds a binary

derivation of the resolvent C of from the clauses in
A

a (see the figure on next page). The literals resolved

upon at interior nodes of the derivation all descend from

134 N

h
literais in the nucleus of C .

Therefore to any pseudo-

clash derivation 6) there

corresponds the binary

derivation (dt obtained by

"decomposing" each pseudo-

clash in 6)d
n

(2) If is a ground pseudo-clash then A = { L)I U 4,OV
0

B= {L1,. ,.,LnI UBC y 1; < i < n and

C = (AOi - FE23 ",otXn}) U 000

U
(aOi

- {

i+1
sloe* ,Ln U 0 00

U.1On U B0.

If none of Also...-An, B and C are tautologies then, for

t <i<12 none of L. ,...L n
belorg to Ai . (since i+i

1,.,,zn} C C C. and l.O.L C Ci) . Conversely, { Li+1

none of Li+1,..,'Ln belong to A. for all is 1 < i < n, tthen

(3 is restricted.

(3) If '. (11®®ynt, Bt} is a ground pseudo-clash with

resolvent C' and if L1
t,...,1111t and B1 are all instances of

41$000,An and B respectively then (by the contraction theorem

applied to the binary derivation corresponding to (_Z') e
(Al,,.o,,A.n,B) is a pseudo-clash and Ct is an instance of

C, the resolvent of ' , Moreover 0, is restricted if et

is.
(4} , = (A1, yAn9B } is a pseudo-clash if and only if
(o { Al , ... y11n.43 { is a clash. If 3 is a clash with

_135

m.g.s.ti. () then tho resolvent of C is

(A01 U .. U on
U BO) e

However the res olvont of is

(AOT0
- {F2Jq.0.'FnI e)

U (J & ..
f Fi+19

Q ..)FnI A.

U
AOn

& U B0® .

)

U ...

U ...

Theorem 2.841 below implies that if el =
f AlP..{PAn,B

is arj restricted clash with resolvent C and if (A (1 $ e o e sA n}

is any permutation of the sequence (A1,...ytln) then

(A-,T(1,)9. z r11fi(n) fB) is a restricted pseudo-clash with

resolvent C. If (A1 , .."An,B) is a pseudo-clash

then , w = {A1j6093AniBj is a clash; however even if C!,

h
is restricted the resolvent of may differ from the resolvent

of e
Theorem 2.801 .Let c. (119 ...9l n,B) than e is a

restricted pseudo-clash if e = L1,4.4-aAn,B1 is a

restrictea clash and if B @ is not a tautology where e is an

m.g.s.u. of (. The resolvent of {r, is the resolvent of Co.

Proof. We use the notat.1on in the definition of pseudo-

clash above. Lot E 1 U F v owl pEn U Fn and Fi =

{Ei IfCis a clash with resolvent C then ands
are uniffable for 1 < i < n. The substitution 0

1
f..9en

is an m.g.s.uo of e where
6i is cn m.gas,uo of E f p gi 1 0= } and

C (A1U...U AOn U BO) 4 1... 4 n.

--136--

Suppose t'_ at C is restricted and that none of 1,1'...,`npBgC

are tautologies. It suffices to show that, for 0 < i < n., no

C i is a tautology and

Ci = (1`01 U...U i O.
'.J Fi+1 U...U Fn U BO) 90... g d

The proof is by induction on i. If i = 0 then C0=B= 90

and CO is not a tautolor. Suppose that the equation for Ci

above holds for a given i (0 < i < n) and thct Ci is not a

tautology. We need to show that Ci+1 is not a tautology a,d

that

C 0 _ (A U...U .l. F. U.U F
+1 01 Oi+1 1+2 n 3,+ i

But Ci+1 is the resolvent of -+1 and Ci where the literals

E i+1
are resolved upon in A i+1

and the litorals F
i+1

$
0
a.. 9

are resolved upon in C
i

. But because (3 is standardised

E. Eit1 & ... ®i So 9i+1 is an m.g.smu0 of

Ei+1 U
Fi+1 ®0... 6i }' and

Ci+1 =
.41Oi±1 9

i+11
U

(Ci i+1
Fi+1

0 ° 1+1).

Since C is restricted

C. 9
i+1

..
Fi+1

90 A.. 6 i+11

(1101 Uf...tj L * U F4+2 Uoc,.UFn U BQ) ...
G.

Since
i20 i+191+1 =

11.0 9i+1

Ci+1
(A01

U...U LQi+1
U Fi+2 U...U Fn U BC) 6, 0...0

+11.

If Ci+11
is a tautology then so is Ci+1 a

i+2 .. 9n= C' U C'

where C' (PC1Uy..U tQi-1
U B0) 00,.. 9n and c" _

(F i+2 V. ..u Fn) 9Q.. 9n. But C' C C.. so C' Is not a

tautology. C r' C B.
00

...4n i so C"is not a tautology.

Therefore V U C" is a tautology only if

- 137

Fj 0... 0n ll X 0 for X -AOk e0... 9n or for

X = B0 00 .4a en for some j and k such that i + 2 n

and 1; < k i + 1 . But then (,' is not restricted contrary

to assumption.

Theorem 2.8.1 fails to hold without the assumption that

B9 is not a tautology* Therefore 2.8.'1 does not fully

justify the second half of remark (5) above. On the other

hand it is not difficult to verify that all completeness

theorems which assert the existence of derivations fQ= (T,c)

containing no tautologies continue to hold under the stronger

restriction that no c(N) 6 is a tautology for N E To N A r(T)

and 6 m.g.s.u, of the clash at s(N). (In fact these

theorems hold under the still stronger condition that no

c(N) 91. , 0 is a tautology where N A r(T)., e i is the

m.g.s.u* of the clash at s1(N) and sm(N) = r(T), sm+l(N) ,r(T)).

For this reason the completeness of searohing for restricted

clash refutations containing no tautologies is not lost by a

corresponding search for binary refutations containing no

tautologies. `ire shall ignore these complications in the

following sections

2.9 H:ypera=resolution and P,,-resolution.

A clash . is a PPS and i,ts resolvent C is a

P esolvent If E is binary and one parent of C is positive.

The completeness of PI--resolution follows from the completeness

of hyper-resolution, for given any hyper-resolution derivation

- 138 -

each hyper--resolution clash C in 0 can be replaced by
ea .

a p seudo-clash and can be replaced by a P1 --derivation

of the resolvent of e.

Search strategies for hyper-resolution have the advantage

over those for PI-resolution that they avoid the redundancy

involved in calculating the nt hyper-resolvent pseudo-clashes
n

associated with a hyper resolution clash e having n

satellites. On the other hand search strategies for PI -
resolution have the advantage of computing hyper-resolvents

incrementally and of saving the intermediate resolvents for

resolution with possibly other positive satellites. More

precisely if (A1sedejAn9B) is a hyper-resolution

pseudo-clash with resolvent C and associated sequence of Pi-

resolvents C19 m..1Cn= C then each C. can be used as an intera-
n

mediate resolvent for some hyper-resolution pseudo-clash CY

(A1 .9e pA.iq lip
1

9 . nB) without recalculating for (the

intermediate resolvents C19oo.vCi already calculated for Q,

A second point in favour of P1 resolution is that the problem

of developing search strategies for binary resolution systems

is much better understood than the corresponding problem for

clashes of larger oardinalityo

The following version of P1-resolution incorporating the

use of marked factors offers the advantage of both PI -resolution

and hyper-r.-solution without being subject to any of the dis-

advantages of either..

-139-

(1) An input positive clause is factored as a

satellite clause.

(2) An input non-positive clause B is factored as a

nucleus clause for hyper-resolution (i.e. generate all

factors B 6 of B where a is an m.g.s.u. of a unifiable

complete partition of all the negative literals in B). For

each such factor Bt of B choose a total ordering of the

negative (i.e. distinguished) literals in B'.

(3) Resolve a positive factor on its single distinguished

literal with a non-positive factor on its first remaining

negative literal.

(4) Factor a positive resolvent as a satellite clause.

Let a non-positive resolvent be its own trivial i-factor and

let its first distinguished literal be the next remaining

distinguished literal descending from its non-positive parent.

Clearly the device of choosing a unique total ordering of

the negative literals in non-positive factors amounts to

associating a unique pseudo-clash with every hyper-resolution

clash. The generation of factors of positive clauses can be

further restricted by choosing an cC-ordering and then only

generating those satellite factors compatible with the

ccrestriction. The method of decomposing hyper-resolution

clashes outlined above can be extended to hyper-resolution

after rena:i.ng without any complications. P. system employing

renaming, u-ordering and (1) - (4) has been suggested by

Darlington [6] for application to information retrieval.

Darli ngton° s system also incorporates Meltzer's device of

using renaming to simulate set of support- [26]

2.10 Maximal Pseudo-clash Refutations,

Part (a) of Lemma 2.10x1 is used in the proof of Theorem

2.10.2 which asserts the Oxistence of maximal pseudo-clash

refutations, Part (b) 3s used in Chapter 3 to prove a

permutation theorem for paramodulation refutations.

Lemma 2.10.1. Let S V J BI be an unsatisfiable set

of ground clauses whore B = {L1p.o9sLn} is not a tautology*

(al) For 1 < i < n let IRi be the set of rosolvents of

restricted pseudo-clashes (A1 a..,AipD)

on Di = (L1, ...,Li} where Al E S are not

tautologies

(bi) For 1 <i < n let R. be the set of resolvents of

clashes e= {A
1
p...,AiBj where Al,.., pA i e S

are not tautologies and the set of literals resolved

upon in B is {L1,...,Li} .

then

(aii) Si = S U Ri is unsatisfiable for all i, 1 < i < n,

and

(bii) Si = S V Ri is unsatisfiable for all i, 1 < i < n.

Proof. (a) By induction on i. Extend the definition

of Ri and
S.

tot he case i = 0 by letting 0 _ {B} . Then,

since S0 = S ' U { B (aii) holds trivially for i _ O.

Suppose that (aii) holds for a given i. Then we want to show

- 141 -

that Si+i is unsatisfiable assuming that S. is unsatisfi.able.

But Ri+1 is the set of non-tautologous binary resolvents

of clashes Ci} where
Li+1 E S and Ci E R. are not

tau';ologies and where Li+1 is the literal resolved upon in

C.. Si+1
(Si Ri U Ri+1 It suffices to construct a semantic

tree which is closed for Si+1 . Let 8 = (T,() be an binary

semantic tree for the set of atoms in Si ordered with Li+1

last. Then S is closed for S. and any clause C. E R.

which fails in 3 fails properly only at a tip of T (since Ci

contains Li+1 and
Li+i / &(N) if N is not a tip of T).

Suppose 8 is not closed for Si+1 . Then some complete

branch 61 of does not contain a failure point for Si+1

But then some C i E R. fails properly at tho tip N1 of A1,

Let N = c(N1) and s-1(N) N1 ,N2 } . Then some

E S fails properly at N2(since the complete branch 6 2

differing from 631 only in the tip N1 contains a failure

point Poi S)- By 2.3-3. the resolvent C E 'R i+1
of 113+i and Ci fails at N on contrary to assumption. So

8

where L E A1,..., Li

Let 9 = (T,V) be a binary semantic tree for the set of atoms

in so = S6 l . Then 8 is closed for S. Suppose 8 is not

closed for some Si, 1 < i-< n. Then some complete branch

6 of. 8 contains a failure point for SC but not for Si.

is closed for Si+1! and
Si+1

is unsatisfiable,

(b) Ri = {C : C
(n1 - { L 1} U ...U (L'

U (B - {L19...,LiI), f-,r G1,...,s.i E S

_142.

Therefore B fails on 6 and { 1$ 0 .. PLi} C CQ (43) .

Le-u be the complete branch of 8 which differs from 63

only in L ., ioe. (Q (63 .) _ (C ((3) -- { Lj}) U IL
i1o

for 1 <J< i. Then each b3 j
contains a failure point for

S. Let :L.j E S fail on (8j. If L j j t j for some j then

A fails on d3 already and so contrary to assumption 6
contains a failure point for S and therefore for S

1
S. There-

fore Lj E A.. Let

C = (A1 - { L1 }) U... U (Ai- { Li})

U (B - {L1,,..a9Li}) .

then C E Ri and C fails on 6 i.e. C C CQ(63) since

A (: 3) - Lj }) U ILJ) and

A _ {Lj} C c(0 and

B -L1$...,Li C C2(03) .

Therefore 63 contains a failure point for S It follows

that 8 is closed for S. and that S. is unsatisfiable.
3. 1

The,;rem 2.10.2. If S is unsatisfiable then there exists,

a refutation 6D (Tic) of S such that O is a pseudo-clash
n

derivation and the sequence B of literals resolved upon in the
n

nucleus B of any pseudo-clash in OD contains all the

literals in B.) contains no tautologies and every

pseudo-clash in is restricted.

Proof. By the contraction theorem it suffices to consider

the case ur:;zere S is a set of ground clauses. The proof is

by induction cn the total number n of distinct atoms contained

in S. If n = 1 then S C { {L}, {L} , {L,L} } for

- 1'43

sc.e atom L. The derivation l) consisting of the pseudo-

clash C . ({LJ, {L) with resolvent Q satisfies the

theorem. Suppose that n>1 and that the theorem holds for

arx,;- unsatisfiable set containing fewer than a total of n

distinct atoms.

Suppose that S contains only the distinct atoms L19...Ln

Let C19...,Cm E S be all the clauses in S containing the

atom LI positively. Thus L1 has exactly m distinct positive

occurronoss in S. Let C. be a sequence of literals i
containing all and only the literals in C. where L1 occi}rs

last: in C.. Let SO = S and for I < i< in let

Si- (Si.-1 { C U Ri where Ri is the set of all non-

tautologous resolvents of restricted pseudo-clashes with

satellites in Si`1, and nucleus C. where C. is the sequence of

literals resolved upon in C.. Each Si is unsatisfiabla
n

since SO = S is unsatisfiable and if Sis unsatisfiable

then so is Si, by 2.10.1, for I <- i m Notice that S.

contains mi-i positive occurrences of L because if S

contains m - i+1 such occurrences, thouu Si-, -- { C. contains
n

m - i such occurrences, but R. contains no positive occurrences

of L1 by virtue of the fact that L1 is last in the sequence
n

Cim Thus Sm contains no positive occurrences of L1.

Therefore, by the purity principle [39] some S t C
A
Sm is unwr,tisfiable where the atom L1 does not occur in St.

By induction hypothesis there exists a refutation

6) (Tt, ct) of St satisfying the theorem. By ap;-encling

- 144 Q-

to each tip N a Tt where c' (N') A S the derivation of

ct(N') from S associated with the construction above we obtain

the desired refutation 6) of S.

The proposition analogous to Theorem 2.10.2 for clashes

does not hold. If S = { , L { L1'L21 , {L1 . L2 } ,

{ L1 ,L2) } then S is unsatisfiable but there exists no clash

refutation (fl of S such that the set of literals resolved upon

in the nucleus B of ary clash C in 6J coincides with the

set of all literals in B. No such refutation 6) of S exists

even if 6) is allowed to contain unrestricted clashes and

tautologies.

- 145 -

CHUM 3.

The use of equality axioms in resolution systems has

seemed to be especially inefficient. In order to remedy

this problem several modifications of resolution have been

proposed (e.g. [3] , [6] 9 [28] a[38] 2

[43]' [48] 9 and [55]). Of these the paramodul-

ation method of [38] seems to be particularly simple and

efficient. In this chapter we compare paramodulction with

hyper-resolution using axioms for equality. These two

methods are first described in sections 3.1 and 3.2 and then

compared in 3.3. L simple interpretation of hyper-resolution

with equality axioms is found in the subsystem of paramodulation

providing a straightforward proof for the completeness of this

subsystem. In sections 3.4 and 3o5 modifications of the

hyper-resolution method are proposed and these modifications

are seen to induce corresponding modifications of the

paramodulation method. i principal conclusion of this

chapter is that systems designed especially to deal with

equality need not be more efficient than existing resolution

systems.

Chapter 3 is essentially [20] with only minor

modifications.

3-l Hyper--resolution with Egualitz kKioms.

Let 50 be a set of clauses and let E = E1 U E2 U E3 where

146

E1= x = x }} 9

E2= xi Yi' f(x1 y...,xi,...yxn)=
f(x1,...9yi,...rxn)

f in the vocabulary of S0 anal < i < n{,

E3 xi yi, '(xj jQO*,xiy...Pxn).0

P the equality symbol or P in the vocabulary

of So anal < i < n } J.
We -writes = t instead of = (S. ,t) ands A t instead of

_ (8 . We adopt the convention that "s=t" is syntactically

indistinguishable from "t=s". This convention allows us to

simplify notation and in particular allows us to consider as

tautologies clauses of the form f s A t , t = s l .

If SO has no normal model (i.e. no model in which the

equality symbol is interpreted as a substitc.tive identity

relation) then S = S6 U E is unaatisfiable. Therefore there

exists a hyper-resolution refutation 6 of So This needs

to be verified by appropriately modifying earlier definitions

and proofs to accomodato the indistinguishability of "t=s"

and "s=t't a, In this connection we note only that two equations

t1=s1 and t2=s2 may have two non-equivalent m.gos®us, i.e. one

for & I = { { t 1 , 2 } , {
s1's2 } }

and another for e2
{ { t1 9 s2 { , { t2, s1 } { . In section 3.3 we shall

compare h-por-resolution refutations (D of S with paramodulation

refutations of S0

The efficiency of obtaining the refutation m can probably

be improved by imposing restrictions which have not been

-147-

investigated for paramodulation (e.g. deletion of tautologies

and subsumed clauses, c ordering restrictions, various

factoring methods, unique decomposition of restricted clashes,

diagonal search and preprocessing procedures). In addition

we note the following improvement for obtaining the hyper--

resolution refutation OJ of S = S0 U E. if SO results by

eliminating quantifiers from a set of sentences SC* than it
is unnecessary to include in E2 C E axioms for the Skolem

function symbols introduced in obtaining SC from S0 . This

follows directly from the fact that S0* U E* is unsatisfiable

where E* = EI U E2* U E3 and E2* contains axioms only for

the function symbols occurring in S 0*.

.2 Paramodulation.

Given a clause B and a single occurrence of a term t in

B we write B [t] to indicate the given occurrence of t in 13.

For grou,id clauses A = { t = s } l.1 AO and B = B [t]
paramodulanb of L and B is the clause C = B [s/t] U L;C

where ' B[s/t] indicates the result of replacing the single

distinguished occurrence of t in B[t] by s. Mote that t
may occur as a subterm of another term in B, both in its

distinguished occurrence in B[t] as well as in otner

occurrences in B.

For the general case paramodulation is most conveniently

defined in the context of refutation systems which include a

separate rule for factoring clauses. For standardised factors

- 148-

A = it , = sJ v 1. and B = B[t22 where { ti , t2} is

unifiable with m.g.uo e , a paramodulant of A and D is the

clause

C = AO U Be[se/t2e]

_ (110 U B[s/t2]) Q o

The factors A and B are respectively the first and second

arents of Co We cull the distinguished occurrence of t2

In B [t2] the term ramodulated upon i B. (In a more

precise terminology we would refer instead to "the

distinguished occurrence of the term paramodulated upon..")

rhQ literal t, = s, in A and the literal in B[t] containing

the distinguished occurrence of t are both called the

literals paramodulated u.on<

An important case of paramodulation occurs when the

occurrence of the term paramodulated upon in the second parent

D[t] does not occur as a proper subterm of another term in Do

In this c...se the distinguished occurrence of t in B [t]is said,

to be rma, in B [t] and the application of paramodulation is

also pry (The terminology here is borrowed from Sibert

[48]). For example if B = { f(c) A c} then both

the single occurrence of f(c) and the second occurrence of c in

B are primary ix.B but the first ocourrence of c is not.

A derivation 6t= (Too) is a -derivation if NeT and

(N) _ { DT' q ...,Nn } , 0 implies that either

N c (S-1 (N)) is a clash with resolvent c(N) or

(2) n=2 and c(N) is a paxamodulant of factors of c(N
and c(N2).

- 149 -

Notice that we do not explicitly exhibit factoring in either

clash-derivations or pt-derivations. A p-derivation 0 is binary

if all clashes in 6) are binary.

Given a set of clauses S© let

E4 = { { f (xi 9...9xn)= f(x19...'xnf f in the

vocabulary of S©s n > 0
1

.

The following completeness theorem for paramodulation

was reported by G. Robinson and dos in [38] .

Theorema.2.1. If S0 has no normal model then there

exists a binary p-refutation of S
0

U E4.

Robinson and VIos have also proposed the following

unsolved

C one ecture if S
0

has no normal model then

there exists a bin.=7 p-refutation of S0 U E1.

3 Comparison of the Paramodulation and Iy e solution
Methods.

The basis for our comparison rests upon the observation

that most hyper-resolvents with nucleus parents in E2 U E3

can be interpreted as par:,modulan,ts.. This same observation

was noted independem,;7y by Chang in [4] . For later

applications in section 3a5 it is useful to formulate this

observation more generally for n-resolvents with nucleus parents

in E2 UF,.

L, clash L' is an n-clash and its resolvent is an n-resolvent

if the set of literals resolved upon in the nucleus B E (.
coincides with the set of negative literals contained in B.

-150--

Thus any hypor-resolvent is an n-resolvent and any n>-resolvent

of a restricted n-clash all of whose satellite parents are

positive, is a hyper-resolvent. Note that we do not require

that n-clashes be restricted.

In the sequel in order to simplify terminology we shall

often treat variants of the same clause as though they were

identical. This convention allows us in the statement

of 3.3.1 below to r efcr to ',1B E Eat' instkad of "B a variant

of a clause in E3tr:?

Lemma . .1 ,, Let '19.40y1,,nSB} be an n-clash

with nucleus B and n-resolvent C. Then

(1) if B E E3 and n = 2 then C is a primary paramodulant

of factors of Al and A2 t

(2) if B E E2 then C is a paramodulant whose first parent

is a factor of Al and second parent is an appropriate

clause B* E E4.

(if B {x, yis f(x1,...,xia....gxn)

f(x1'.M.Jyi$...9xn) }

then D* = { f (x1 a . 9 A) = f (x1 o ... gxn) } o)

Proof. (1) Let °R = { Al I., A24 , B®} be the sot of

factors of clauses :Ln e having C as resolvent. Lt = B since

otherwise the two negative literals of B would be unified in

Bt' implying that e has only one satellite in which case n

would be 1. Lot

_- 15'r

A; = {t = s} U
%o1

0

A2 {p(t1sQ.nyti.,...stn)} U LO2 and

B4 = {xi yis p(xs...sxis9xn)aP(x1y.o.syi...9xn)I

Then C = ({P(t1so..'ss¢..gtn)} U
A41

U
Z102

) 0 where 8

is an m.g.s)ue of {tyti} . C is therefore a primary

paramodulant of A Q and !i2 r .

(2) Let C° = {Ap,B} be the appropriate set of

factors of clauses in C having C as resolvent. Bt = B4

Let

A'= ft = s l U A0 and.

Bt = {xi A Yis f(xjs.9sxisQ.esxn)

f(xIs..e`Yisaa.Pxn)) .

Then C = {f(x,s..ast9...xn = f(x1y..o'ss...sxn)} U A0

and C is a paramodulant of At and of

B* = { f(x19...sxn) = f(x1,.o.,xn) } ED
4

Lemma 3.31 implies that any hyper-resolution derviation

CD of a clause C f'tom clauses SO U E U E4 can be

transformed into a p-derivation of C from SC U E1 U E4

provided that every clash in 0 with nucleus B E E3 has

exactly two satellites. Furthermore., in order to obtain

the application of section 3.4 to triv .lization of inequalities$

it is desirable that the clause Ix = XI does not occur

rts parent of a i aramodulant in the resulting p-derivation.

These two desiderata motivate the following definition and

lemma.

A clash derivation (D is normal if whenever a clause

152

B E E,, U E3 occurs in 6)

(1) B occurs as nucleus of an n-clash C ,

(2) C n (E1 U E4) = 0 and

(3) If B E E3 then C contains exactly two satellites.

Theorem 30-3 below states that any normal derivation

from clauses S 0
U E U E

4
, can be transformed into a p-derivation

from SQ U E1 U E4. Lemma 3.3.2 both guarantees the existence

of normal derivations and also serves as a lemma in the proof

of 3.1E..2.

Lemma 3.3.2. Let S = SC U Et, where Et = E or

Et-;E2 U E3 UE., be unsatisfiable. Then there exists a finite

unsatisfiable set S' of ground instances of clauses in S such

that if a clash derivation 6) =(T)c) from S results from lifting

a clash derivation Cot= (T,ct) from St (i.e. c'(N) is an instance

of e(N) for all N E T) then for every clash (in

(1) if the nucleus of C is in E2 U E3 then

C n {E1 U E4) = 0 and

(2) if 0 i; an n -clash with nucleus B E E3 then C
contains exactly two satellites.

Proof. Choose St containing no tautologies. In addition

let S' contain no instances of clauses in E2 of the form

1 i3 i,o..,i ,.a.,n i ,o..,i, ,
n (*) {t. t i-9

t t) = f(t t ... t)
S4 may so be chosen because any instance of a clause in E2 of

form (*) is subsumed by the corresponding instance {f(t1,o.eptn)

f(ti p...,,t) } of a clause in Ei or E4.

-- 153 -

Lot (DI and 0 be derivations from S' and S respectively

where to lifts 01. Suppose that (1) is violated. Then there

are clauses A, B e 0, where 11. a E1 U E and B E E2 U E3

is nucleus of e which is some clash in 6 If B e E2

then, since A is positive, the negative literal in B is resolved

upon in C' end the corresponding instance Bt of B in O) t is of

the form (*). If B e E3 then the first or second negative

literal in B is resolved upon in e and th4 corresponding

instance Bt of B in O f is a tautology.

If (2) is violated and C is an n-clash in 0 with

nucleus B E E3 and only one satellite then the corresponding

instance B I of B in (D t is a tautology of the form {s A t, s=t } .

Lemma 3,3.2 guarantees the existence of normal refutations

4 of unsatisfiable S==Sp U Et. For if bat is a hypor-

resolution refutation of S t then ® is normal if 6a lifts (O t

and S t is the finite set of instances of clauses in

asserted tc P xist by 3.3.2.

Given a normal derivation 6) we denote the corresponding

p--derivation by $ (0). Let 0 = (T,c) be a normal

derivation from S0 U Et where Et = E or Et = E2 U E3 U E 0

Then ¢ (ID) _ (Tt,c") is defined as follows

(1) TtCT,

(2) N e T-T9 of and only if c(N) E E3 and

(3) fort E TI

(a) if c(N) E E2 then ct(N) E E

- 154 -

(i.e. if c(N) = { xi A yi,f(x1,...$xi,.>.,x n)

f(x1,...pyi,...,xn) }

then o'(N) = f(x1g...,xn)= f(x,12®..vxn)
})

and

(b) c'(N) = c(N) otherwise.

Theorem 3.323. Let 6) be a normal derivation of a clause

C from S4 U E' where E' = E or E' = E2 U E3 U E4. Then

(0)) is a per-derivation from SC U E" where E" =

EE4ifE =Eand E".=E4if E' =E2UE3UE4.

Proof. 3.3 »3 is a direct co nsequence of Lemma 3.3.1

Theorem. . If S C has no normal model then there

exists a p--refutation 6) of SC U E4 such that:

(xi) Both parents of every paramodulant in m are positive.

(r2) Every resolvent in 4) is a hyper-resolvent.

(r3) All applications of paramodulation in O) are primary

except when the second parent is in E4. Moreover

no clause in E4 is first parent of a paramodulant

in 0 ,,

(r4) Given any O -ordering for S
C,

U E4 all parents of

paramodulants and satellite parents of hyper-

resolvants in 6, satisfy the o(--restriction4

Proof. Since SC has no nor'ral model, S(, U L2 U E3U E1-

is unsatisfiable. Let G
oC

be an o ordering for SQ U E4 and

therefore "or S as well. Let 0 be a hyper-resolution

refutation of S satisfying the o(-restriction for satellites in

0 0 Moreover let (9a be obtained by lifting a ground

-15a-

refutation of a set St of ground instances of clauses in S.,

where S' satisfies the conditions of Lemma 3.3.2. Then GDQ

is normal and (00) = 0 is a p-refutation of SQ U E4.

That 0 satisfies (rl)' (r2) and (r4) follows directly from the

definition of $. The first part of (r3) follows from Lemma

3,3'1 and the second part of (r3) follows from Lemma 3.3.2.

Note that Theorem 393.4 implies Theorem 3.2.1 because all
applications of lWper-resolution can be replaced by sequences

of PI1-resolutions.

Theorem 3If S0 has no normal model then there

exists a p-refutation 0 of S. U E,1 U E4 such that

(rl) - (r4.) and

(r5) The clause { x = x} does not occur in 6 as parent

of a paramodulant and clauses in E4 occur in only

as second parents of paramodulants.

Proof, The proof of 3 03 05 is identical to that of 3.3.4

except t a.t we let S = S0 U E. Restriction (r5) then follows

from Lemma 3.3.2 and the definition of o

Theorems 3.3.4 and 3.3.5 establish the most direct of

our comparisons between paramodulation and hyper-resolution

with equality axioms. These comparisons are refined further

in the next two sections. We note first that 3-3-4 and 3-3-5

already establish the compatibility with the paramodulation

method of the deletion of tautologies and subsumed clauses.

(Since these deletion rules and compatible with hyper-resolution

refutations 0 they are also compatible with p-refutations 0 M.)

- 1 56 -

It is also possible to impose mini,nality restrictions on

p-refutations 4 () corresponding to the mini.mality

restrictions imposable on hyper-resolution derivations.

Finally the eompatability of renaming for hyper-resolution

implies the same for paramodulation provided that the equality

symbol is not enamed.

94. Trivial.ization of Inequalities.

Resolving a factor C {st} U CC with {x = x}

produces the clause C09 where 9 is an meg.u. of {s,t}

We call such an application of resolution the operation of

trivializingaan no uala L (compare [3] and [48]) .

C-)rollary 3o7o2 of Theorem 3.1+,1 implies that if S0 has no

normal model then S may be effectively preprocessed by

trivAizing inequalities in clauses of S0 obtaining a set of

clauses S0* such that S* = S 0 U E2 U E3 is unsatisifiable.

SQ consists of SQ together with all resolvents of clashes

{A1' m.. j.An,9B where B e SC and Ai = { = x} for all i,
1 < i n (simultaneous triv:lalizatior of inequalities),

Clearly the number of applications of resolution involved in

obtaining Spy` from SC is finite and therefore S0 can

effectively be obtained from SF,.

If &J is a normal hyper-resolution refutation of SCE`

then 4) (Q) is a p--refutation of S0* U E4 such that (r1) -

(r5) of Theorems 3.3.4 and 3 03,5 hold for 4 (0) 9 with the

obvious strengthening of (r5) that {z} does not occur

- 157 --

in (6)). If we enlarge 4) (d)) so as to exhibit

trivializations of inequalities then we obtain a p-refutation
t of S0 U E1 U E4 which may differ from the p-refutation

of 3.3.5 in that (r2) may fail to hold for these applications

of resolution which trivialize inequalities. On the other

hand all trivializations of inequalities in Mt occur before

all other applications of resolution and before all applica-

tions of paramodulation in V. whereas no such ordering of

these operations need occur in the p-refutation asserted to

e-rist by 3.3.5.

Theorem 3.4.1 implies more generally that satisfiable

sets S1 of unit clauses may be effectively preprocessed out of

a set of clauses S = S
0

U S. before attempting to find a

refutation of the resulting set SO . Our intuition is that

such preprocessing is likely to increase the efficiency of

obtaining proofs of more difficult theorems. The figure below

gives a Pimple example of two derivations of the same clause.

Only the first derivation will be generated if the original set

SO is preprocessed. If the ontire set SO* must be generated

before attempting to find a refutation then this method of

preprocessing may be inefficient for proving theorems which

have a simple proof which can be detected for instance with

less effort than that involved in generating all of So itself.

On the ot]+,:r hand since resolving P. clause A E SO with a unit

clause in S1 producer a clause containing fewer literals than

are contained in.A we may expect that this preprocessing

-158-

procedure will tend to retain the simplest of th se

derivations which differ by permuting occurrences of clauses

from S1 along their branches. Finally even for the case of

simpler theorems preprocessing can be made more officiont by

simultaneously generating S0 and generating resolvents from

Sp before completing the generation of S0*. (Such a

procedure would be similar to the diagonal search strategy

of Chapter 1..)

Example,

{ L1 L) E SQ

Notice that the redundancy exemplified here can not be

removed by implementing singly connectedness [44] and is
not removed by hyperr-resolution. Notice also that in this

case the eliminated proof involved resolvents of length 2

and is therefore more complicated than the first proof in the

sense that it is generated after the first proof by diagonal

search (chapter 4-.)

Theorem1+1. Let S = S C us
I

be unsatisfiable whore S

is a sati.sgiable set of unit clauses. 'Then the set

S0* = S0 U R is unsatisfiable where R is the set of

resolvents of clashes with nucleus in S0 and satellites in S1.

Proof. Assume first that S is a set of ground

clauses, Let S1 = {{ L1},..., { Ln}}. We prove the theorem

for this case showing by induction that, for all k < n,

Uk = SC U Rk U(S1 - {{ L1},..., { Lk}})

is unsatisfiable where Rk is the set of resolvents of clashes

with nucleus in SC and satellites in if L1},..,,, {L k}}.

U0 is unsatisfiable since U0 = S.

Suppose that Uk is unsatisfiable for some given k.

By Lemma 2.10,E (a) or (b), U = (Uk
{Lk+1})

U R' is

unsatisfiable where R' is the set of binary resolvents C of

clashes C with nucleus {L k+1} and satellites L in Uk
{ Lk+1}°

But then A S. (since S1 is satisfiablo. So A E S0 U Rk

and therefore C E
Rkt-1

But then R' C Rk+1 and since

Rk Z Rk+1' Uk+1 =
U is unsatisfiable. It follows therefore

that Un = S0 U R = S0* is unsatisfiable.

If S is not a set of ground clauses let S' = S0' U S1'

be a finite set of ground instances of clauses in S where

S0' and S1' are instances of clauses in S0 and S1 respectively.

Then S0' U R" is unsatisfiable where R" is the set of

resolvents of clashes with nucleus in S0' and satellites

in S1'. But by the contraction theorem S0' U R' is a set

of ground instances of clauses in a0 U R which is therefore

unsatisfiable.

Corollary 3.4.2. Let S = SC U E be unsatisfiable.

Then S* = SC U R U E2 U E3 is unsatisfitable where R is the set

of resolvents of clashes with nucleus in S0 and satellites in E1.

-160-

Proof . Let St be a finite unsatisfiable set of

ground instgnces of clauses in S satisfying Lemma 3.3.2.

Take S
0

U E2 U E3 to be the S© of Theorem 3.1+:1. Then

SD U E2 U F3 U R
0

is unsatisfiable where each C in R0 is the

resolvent of a clash (. having nucleus in S
0

U E2 U E3 and

satellites {x = x } 6 But each C e R0 is obtained in 3.)+.t by

lifting a ground a lash e' C S I . If 0 is the derivation

of C from C and 6)t the derivation of an instance of C from

t then it follows by 3.3.2 that 0) is normal and therefore

that the nucleus parent of C is not in E2 U E3t i.e. RQ R.

Permutation of Inferences.

Theorem 3.161 is a permutation theorem in the sense that

it states that certain clashes may be permuted toward the tips

of a derivation. Theorem 3,5i and its corollary are permuta-

tion theorems in the same sense. Corollary 3.5.2 implies that

applications of paramodulation may be made to occur before

applications of resolution in a p-refutation. Together

394e2 and 3.5.2 imply that a p-refutation may be obtained

either in the form where trivializatione of inequalities

precede paramodulations which in turn precede other resolu-

tions or in the form where paramodulations precede trivializa-

tions which precede other resolutions. For a p--refutation

in either of these forms we may insist that (r3) and. (r5) still
hold ((r5) suitably modified as for the p-refutation corresponding

to Corollary 3.42). Restriction (ri) must be weakened to

- 161 --

assert only that literals paramodulated upon are positive.

Restrictions (r2) and (rr1+) need to be modified to assert

that resolutions which do not trivialize inequalities can be

applications of any fixed complete resolution rule (e.g. set

of support, M-clash resolution, binary restricted clash

resolution etc.). The ordering restriction of Corollary

3.502 can be effectively :implemented by insisting that no

resolvent be the parent of a paramodulant. On the other hand

3.5.2 unlike 3.1+02 does not imply that the initial set S
0

can

be effectively pr=eprocesseud by applying paramodulation to

obtain an unsati.sfiable set S© .

A theorem similar to 3.5.2 can be obtained by analyzing

the abstract of the Robinson - Wos completeness proof for para-

modulation., [37] and [56] It was in fact

this observation itiich motivated the discovery of Theorem 3..5.1

and its corollary. Unlike the case of obtaining the p-refuta-

tions corresponding to 344-02 we do not have any intuition on

the efficienoy of finding the p-refutations corresponding to

3.5.2.
.

Given S = SO U S1 where SrI is a set of non-positive

clauses, let be a clash derivation of a clause C from S

such that every clash in (0 is an n-clash with nucleus in S

and satellites not in S. Then C is said to be an S

resolvent from a and the derivation ID is said to be

associated with C. If 81 = E2 lJ
E3

and if 0, is a normal

derivation associated with an 8 1'-resolvent C from SO2 then

-16Z-

$ () is a p-derivation of C from SC containing no

application of clash resolution.

Theorem 3r5.1. Let S = S©U S1 be unsatisfiable where

S1 is a set of non positive clauses. Then some finite set S*

of S1-resolvents from SQ is unsatisfiable,

Corollary 3 .5,,,2. Let S = SC U E2 U E3 be unsatisfiable.

Then some finite set S* of clauses derivable by paramodulation

with resolution from SC U E4 is unsatisfiable.

Proof of 3.5.2. Let E2 U E3 be the S1 of 3.5.1 and let

S* be the resulting finite unsatisfiable set of S1 resolvents

from SC. As in the proof of 3.1+.2 we m a y choose a set 8 '

of ground instances of clauses in S such that each derivation

C associated with c E S* is normal. By 3.3.3 each 4 (C,

is a p-derivation and since 0 C contains no clash with

nacieus not in E2 U E3 (6) C) contains no application of

clash resolution.

The proof of Theorem 3.5.1 requires the f ollowing lemma,

Lemma 3 s5.3. Let 6) be a hyper-resolution derivation

of a positive ground clause C from ground clauses S U {D}

where D is non-positive and occurs in 6) only at the nucleus

node immediately above the root.. Suppose that (D contains

no tautologies. Then there is a hyper resolution derivation

)1 of a claus'; C' C C from clauses S U R where R is the

sat of n-rrE:solvents of n -clashes with satellites in S and

nucleus D. 0 e contains no tautologies.

- 1 6 3 -

P r o o f of , . . Let D = { L,.e.9I} U D
1

where D0 is positive and each I. is negative. Let C

K1, ...,Km } and -7 C = { { K1 { , ..., { K} { 19

Notice that J L. I K. for all i, j where 1 < i < n,

1 < j < m , since the clash at the root of © is

restricted. S U {D} U --T C is unsatisfiable because S U {D}

implies C. By Lemma 2.10.1 (b), S U Rt U -rC is unsati s

fiable where R' is the set of n--clash resolvents with nucleus

D and satellites in S U -, Co But R' = R sinco no n-Yclash

with nucleus D has a clause {Kj} as satellite. Therefore

S U R U' C is unsatisfiable and S U R implies C. By

Theorem 205.1, because C is positive, there exists a hyper-

resolution derivation (D' from S U R of a clause C' which

subsumes C, i.e. Ct C C. 6 contains no tautologies.

Proof of .5.1. As in the proof of 3.4..1 it suffices to

consider the case where S is a set of ground clauses. Let

(T,c) be a hyper-resolution refutation of S containing no

tautologies. The proof is by induction on the number n of

clashes in (S) having a clause in S as nucleus o Recall that

each nucleus node of 6) is a tip of To If n = 0 then 6)

is a refutation of 30 and S0 is unsati sf iable o But S0 is

trivially a seu' of S1 resolvents from S0.

Suppose that n > 0 and that the theorem holds for any
0

hyper-re.:oo. ution refutation O' of a set S.' U Si whenever

(' contains no tautologies and the number of occurrences

of clauses in S1 at nucleus nodes is less than no Let N e T

164 -

be such that for all N' a TN, c (N') E SI if and only if

N' is the nucleus node of s-1(N)
o In other words choose N

such that if () N= (TN,c) then a clause D E S1 occurs in

'DN
only at the nucleus node lying immediately above the

root of DN. Then (D N, is a hyper-resolution derivation
.

from SD U {D} of a positive clause C = c(N) and 0 N

contains no tautologies. It follows by Lemma 3Q5o3g that

there exists a hyper resolution derivation 6C of a clause

Cf C C from SD U It where RD is a set of {D} -resolvents

from S0, i.e. RC is a set of S,-resolvents from S©. ®o

contains no tautologies.

Let 6J1 be the subderivation of ® obtained by ignoring

all of 0 N, except for the root N of TN. Then (D , is a

hyper-resolution refutation containing no tautologies of
A

the set (SC U S
I

) U C and 4) 1 contains fewer than n

occurrences of clauses from S1 at its tips. Let d)
2

be

obtained from 6)1 by applying this contraction theorem to

associating with the node N in 63 1 the clause AN= C' C C

and otherwise associating to every other tip Nt in 6) 1 the

clause '1Na = c(N')$ Then (D 2 is a oontraction of CDI and is
.

a hyper-resolution refutation of (SD U S
I

) U C' . 0 2 =

(`1'2,02) contains no tautologies, fewer than n occurrences of

clauses from S1 at its tips and one node N0, corresponding to

N, such that c2(N0) = Cf.

Let 1Q' be obtained by identifying the root of 40 with the

tip N 0
of 2. Then (D ' is a hyper-resolution refutation

- 165 -

of (S0 V S1) V RD containing no tautologies and fewer than n

occurrences of clauses from S1 at its tips. By induction

hypothesis there exists an unsatisfiable set R of S1 -resojnents

from S0 U R0. But si.ice R0 is already a set of S1 -resolnents

from S0, R is as well.

- 166

CH. .

The first half of this chapter (sections 4.1 - 4.5)

extends the Hart-Nils son-Raphael [16] and Pohl [32] theories

of heuristic search to the case of theorem-proving graphs and

theorem-proving problems. In particular the admissibility

and optimality theorems of [16] are generalized for the

classes 6) and 6) of diagonal search strategies for abstract

theorem-proving problems. Both ordinary tree (or graph)

searching problems [8] , [321 , and resolution problems

are shown to be special cases of the more general notion of

abstract theorem-proving problems with non-negative costs.

In seetioi, 4.4 concrete algorithms are discussed for applying

diagonal search strategies to theorem-proving by resclution.

The last two sections of th?,s chapter contain an

investigation of two complete factoring methods. The first
method, when applied to hyper-resolution, amounts to never

unifying negative literals. The second method, m-factoring,

is shown to be always more efficient than the Wos-Robinson

method.

The material in sections 1+.1 - 1i..5j is nearly identical

to that reported in [21] . The ecmpleteZess result of section

4.6 was announced without proof in [1'7] for the special case

of 1Wpar-resolution systems.

.1 Theorem-Proving Graphs.

In the theorem-proving problem we begin with an initial
non-empty set of sentences So and with a set of inference rules f1 .

If ¶ E r and S is a set of sentences then y(s) ss

another set of sentences. Y (S) = 0 if tJ is not

applicable to S. In particular t' (S) = 0 if S is not

finite. In applications to systems, S0 is

a set of clauses and f consists of a single resolution

rule or of a factoring rule and a separate rule for

resolving factors. If tP is binary resolution of

factors then 1 (S) = S' A 0 if S contains two factors

which resolve or ore factor which resolves with itself

and each C' E S' is a resolvent of the clauses in S.

If t is the operation of unifying literals in a single

clause (the Wos-Robinson method of factoring [53])

then if(S) =S' A 0 if S is a singleton S = {C} and

each C' E S' is a factor of C.

Given an initial set of sentences S0 and a set

of inference rules r let S* be the set of all sentences

which can be derived from S0 by iterated application

of the rules in f1 . Each sentence C E S* can be assigned

a level: if C E S0 then the level of C is zero,otherwise

C E T (S) for some l? E 11 and for some S C S* and the

level of C is one greater than the maximum of the levels

of the sentences D E S. If S
i

is the set of all sentences

of level i then S* = U S.. Since a sentence C E S*

0<i
may have several distinct derivations, the level of C

need not be mr-que. Since q? (S) t 0 only if S is finite,

the set of sentences which occur in a given derivation of

a sentence C E S* is always finite. The theorem-proving

problem for a triple (S0, r, F) 9 F C S*, is

- 16s -
that of generating by means of a search strategy 2 some C* E F

by iterated application of the rules in beginning with the

sentences in SC For certain applications it may be required

to derive a sentence C* E Y having minirium level in F or, more

generally, having minimum cost in F, where cost is determined

by some "costing function" defined on the sentences in S*.

The tree (or graph) searching problem [8] , [32] can be

interpreted as a theorem-proving problem (sop l` , F) where

each operator cp r has the property that tp(S)

whenever S is not a singleton.

. triple (S0,r,F) determines a directed graph whose

nodes are single sentences C E S*. C' is an immediate

successor of C (i.e. C' is connected to C by an arc directed

from C to C') if for some S C S* and t,) E 1' , Cc S and C' E (f (S) .

The situation is similar to that which exists for ordinary graph

searching problems as distinguished from tree searching

problems. Searching in a directed graph for a, path from a

node a to a node b can be interpreted as searching in a

directed labelled tree for a path from a node N, with label

c(N1) = a, to a node N2, with label c(N2) = b. The tree

search interpretation of graph searching has the property of

representing a single node d in a graph as distinct nodes

N1 ,...,Nk in a tree when the node d can be generated in k

different ways as the end node of k different paths from

the initial node a. This property of the tree search

representation is one which we find useful when extended to

deal with the more general theorem-proving problem. In

- 169

particular the extended tree search representation associates

distinct nodes with distinct derivations. This I - 1

correspondence between nodes and derivations allows the number

of nodes generated by a search strategy L in the course of

obtaining a terminal node to be treated as a measure of the

efficiency of 5 for the given problem.

We define the notion of an abstract theorem-proving

ga hh ("abstract graph" or simply "graph") (G,s). The

extended tree representation of an interpreted theorem-proving

a h (S0, 1') can be obtained from (Gs) by labelling the

nodes N E G by use of a labelling function c:G - S*, and by

interpreting each application of the function s to a subset

GI C G as an application of a function E P to the subset

{ c(N): N e G' { . An abstract theorem-proving graph is a

pair (Gs) where G is a set of nodes, s:2G 2G is a

successor function defined on subsets of G taking subsets

of G as values. G and s satisfy the following conditions:

(1) s(9)=0.
(2) s(G') $ implies that Gt is finite.

(3) G' 3- G" implies that s(Gt) n s(G11) _ 0 .

(4.) Let 5---'0 ={N E G: N, s(G') for az;y G'C GI,

let
Ok+1

= IN E G : N e s(GI) for some

G' C i U 551 G'n k3 {
Then

(a) $0 / 0 1

(b) G = U 'Gi
0 <i (c)n =i for i / j.

-1,70--

The graph (GIs) reduces to an ordinary tree if s(G't) # 0

implies that G' is a singleton. For this case condition (3)

states that distinct nodes have distinct sets of successors.

More generally, (3) states that distinct sets of nodes have

distinct sets of successors. It is precisely this condition

which ensures that the graphs (G,s) extend the ordinary tree

representation of search spaces. Condition (5) states that

(G,s) is a levelled acyclic directed graph. In other words

each N e G can be assigned a unique level i where N e i
and N X lz j for all j i. If (S0, P) is an interpretation

of (GIs) with labelling function c : G S* then

Si = { c(N) : N e { is just the set of labelled nodes of

level i. Condition (3) guarantees that for each C e S* and

for each distinct derivation of C from S0 there is a distinct

node N e G such that C = c(N). There is no restriction that

,50 or S0 be finite. The case where '0 is infinite allows

us to deal with axiom schemes in theorem-proving and more

generally with potentially infinite sets of initial nodes moo

The successor function s of (G,s) determines a partial

ordering of the nodes in G: NO is an imroc?late successor of

N (and N an immediate ancestor of N') if
N' a s(GI) and N e G' for sone G' C G.

A node NO is a successor of N (and. N an jncest of NO),

written NO > N,

if NO is an immediate successor of N or

if NO is a successor of an immediate successor of N.

we write N < NO if N < NO or N = NO. The definition of (GIs)

-171

guarantees that for all N c G the sot { N' : N' >NJ is

finite, although the set {N' : N' >N{ may be infinite.

Notice that in the theorem-proving interpretation of graphs

(G,s), a derivation of a sentence c(N) consists of all the

sentences c(N') where N' < N. Each such derivation contains

only finitely many sentences c(N').

level 0 N4 N

level 1

level 2

level 3

Fire I.

Figure 1 illustrates a graph (G,s) where nodes are

represented as points and where points N and N' are connected

by a directed line from N to N' if N' is an immediate

Successor of N. In general it is convenient to picture graphs

as directed downward, so that N lies above Nt if N' is a

successor of N. To determine in Figure I if N e s(GI) it

suffices to verify that G' is the set of all nodes connected

to N by an arc directed to N. Thus, for example,

s(N1,N2) = { N6}

s(N2,N6) = { N9 } ,

s(N3,N4) = { N7,N8 1 ,

s (N7) N10'Nll {

s(N2) = s(N5) = s(N8) s(N1,N2,N6) = 0

If the graph of Figure 1 is interpreted as a resolution

graph by a labelling function c : G -+ S* then the two clauses

_172-

c(N7) and c(N8) must be all the resolvents of the pair

c(N3), c(N4). The clause c(N8) resolves with none of the

clauses c(Ni) , 1<i <])+. The clauses c(N10) and c(N,,i)

are either factors of c(N7) or are obtained from c(N7) by

resolving c(N7) with itself. If C =c(N6) = c(N7) = c(N1,.)

then C has three derivations, two of level one and one of

level three. Derivations are not necessarily represented by

derivation trees. For instance the derivation of c(N12)

consists of the caluses c(Ni), c(N2), c(N3), c(N4), c(N6), c(N7),

c(N9), c(N73), c(N13). The clause c(N2) is used twice in the

derivation of c(N13) but is represented by only one node in G.

An abstract theorem-proving problem with non-negative costs

("abstract problem with costs" or simply "problem") is a tuple

63 = (G,s, P',g) where PC G, the set of terminal nodes for P

(or solution nodes), and g : G -+ 1, the costing function of P,

((P , the set of real numbers) are such that

(1) N e P implies that s(G') whenever N e G' C G,

(2) (a) g(N) > 0 for all N E G,

(b) if N E s(N1,...,Nk) (vie write s(N1,...,Nk)

instead of s(f N1 , ...Nk I)) then

g(N) max g(Ni).
1 < i < k

A solution to the problem 6' is obtained by constructing an

algorithm 7- which generates from S! 0 a node N e P. Each node

N e P is assigned a cost and it is often required to solve by

generating a node N e P having minimal cost in P. If g(N) = 0

for all N E G then in effect we have a problem without costs.

- 173 -
Alternatively g(N) may be taken to be the level of N, the

number of nodes N' < N or any other value which satisfies

(3) above. In applications to resolution theory g(N) is

usually taken to be the level of the clause c(N). For N E 50
we do not require that g(N) = 0. This freedom allows us to

assign different costs to distinct nodes in '0 and is

especially useful when 0 is infinite. The set P may be

empty in which case the problem has no solution. In resolution

applications when F= {N E G : c(N) = 01 then P is empty if
the set S0 = {c(N) : NE5 01 is satisfiable. The general

problem P= (G, s, P ,g) reduces to the ordinary tree

searching problem when (G,s) is a tree.

4.2 Search Strategies for Abstract Theorem-Proving Problems.

L. search strategy Y. for P is a function 1..: 2G 2G

which generates subsets of G from other subsets of G. Given

such a function Y for Q we define the sets Mi of nodes
I

already Generated by I before the i+1 .st stage and i of

nodes which are candidates for generation by_,Z at the i+1-st stage:

(1) 0 =0, . 0 = ten,

(2) +1 ri U

ri+1= ({ N : N e s(GS), G' C

We require that 3 satisfy

(3) (i) c Li

V Zz) - 7*.+1

The set of nodes L), chosen from the set of candit-lates

is the set of nodes new3,v generated by £ at the i+1-st stage

(it is easy to verify that i Gli = 0 for all i.>0).

- 1744

The function 7 should be interpreted as selecting subsets G'

of Ii and generating nodes N e s(G') which have not been

previously generated. The definitions above only partially

formalize the intuitive notion of search strategy for P.

In particular the search strategies .. are never allowed to

display ar{y redundancy, i.e. generate the same node twice,

This restriction is not essential because given any concrete,

porsibly re(lundant, algorithm for generating nodes in G there

corresponds a unique search strategy Z, which, except for

redundancies, generates the same nodes in the same order.

Notice that (c) may contain more than one node - as

is common with resolution strategies which simultaneously

generate several resolvents of a single clash or several

factors of a single clause. Notice too that nodes in 1'0

can be generated at axwy stage. We do not require that

contain a node N E P` where in P 0 . If U" is an ordinary

tree search problem then the definition of search strategy for

2 provides a formal notion which applies to the usual strategies

employed in searching for nodes in trees.

A search strategy 7_ for 9= (G,s, P,g) is complete for

if for all N e G there exists an i > 0 such that N e Z.
It is possible to define completeness in this vay since we do not

insist that Z generates no additional nodes after generating

a first node N* a P, We say that terr:inAos at stage i
if and either

(1) P" n Ei or

(2) 2 i Zi-1

-- 175 -
In the first case , terminates with a solution and without

a solution in the second case.

In the terminology of [16], a search strategy L. is

said to be admissible for 5) if L is complete fore and

terminates vith a solution having least cost in if / 0 ,

i.e. N* a P-(1 Ii, P''n L`ir1 = 0 implies that g(N*) c g(N)

for all N e 9 P. In resolution applications admissible search

strategies are of special interest for robot control and

automatic program writing[13 1, where minimal cost solutions

are related to simplest strategies and most efficient programs.

More generally intuition suggests that, in the absence of

special information about the location of non-minimal

solutions, admissible search strategies will tend to be more

efficient than non-admissible strategies for finding arbitrary

solutions. An important step towards formalizing this intuition

has already been made ir. the optimality theorems of Hart, Nilsson,

and Raphael [16 }

We 'define the notion of a search strategy ' for a

problem = being compatible with a merit ordering

4 defined on the nodes of G. For the moment we require only

that be reflexive and defined for all pairs of nodes in G.

We write N 4 NG (N1 has better merit than N2) when N1 4 N2

and not N2 4 N1 We write N N2 (N1 and N2 have egua.,.l merit)

if N, N2 and N2 4 N1. A search strategy for P is compatible

with a merit ordering 4 if for all i > 0 ,

(i) '- i 0 implies that (,) A ,

(2) N E Z(2) implies that N N' for all N' s 2i.

-176-
In other swords, r alwaya generates, from a non-empty set ,V,

at least one node N e Z i and no node N' e Zi which is not

generated by 7- has better merit than any nodo N
e Ei which

is generated by 7,,. Since a node N may have better merit

than an ancestor Nt < N, Z.. need not generate nodes in order

of merit. Distinct strategies Z and Z! for the same 6)

compatible with the same merit ordering A differ only with

regard to tie breaking rules for choosing which nodes to

generate from a set of candidates having equal merit. If 4
is the trivial ordering, N A N' for all N. N' e G, then 4 is

merit ordering for G and arty search strategy- , for

is compatible with . If < is the ordering by levels,

N 4 N' if and only if N E 5i, NEV tand i < i', then

a* search strategy for P compatible with A is a level

saturation (or breadth first) strategy for 6) . If 4 is

the ordering by costs, N 4 N' if and only if g(To C g(N'CC),

then Z compatible with 4 is a cost saturation strategy for iP .

If A is the inverse ordering by levels, N A PT' if and only if
N Weand i > it, then I compatible with 4 is a

depth first strategy for 6).

Lemma 4.2.1 states the fundamental properties of search

strategies 2: compatible with merit orderings: (a) any node

N2 e G is generated by L. before any node NI which has worse

merit than N2 and than all the ancestors of N2, (b) if N1 is

generated before N2 then N2 or some ancestor of N2 has wore e or

equal, merit to N1 .

13%ls revnark

c.C b realk n
d iFFctreht

is no+ S'Erlc11' rower 3 5 194 ce -f4Q cotisc Q"CQ>S

Q tie di fererttl Mqy die kkz VneraLto%A of
etv4eec. Su-c..ess ors of. +ile artoit.1q(I) 4--ted nodes,

Lemma 4.2.1. Let P = (G, s, ", g) be a problem,,
~4

a merit ordering for G and , a search strategy for

compatible with - .

(a) If N1 E Ei and N2 E G are such that N N1

for all N < N2 then N2 E i-1 .

(b) If N1 E i and N2 E 2 ('Ei) then N1 N

for some N < N2.

Proof. (a) Let N1 be generated at the j + 1 - st

stage, i.e. N1 E (Z'j), N1 I ZE j Cnd j < i. If
N2 then for some N < N2, N j j and N Ej
But N -< N1 and therefore , is not compatible with 4
since it generates N1 instead of N at the j + 1 - st

stage. Therefore N2 E `j and N2 E , i-1 since j < i.
(b) Suppose N N1 for all N < N2. Then by (a),

N2 E Yi-1 and therefore N2 j (Li)-
A merit ordering for G is 8-finite if for

all N E G the set {N' E G : N' N} is finite (compare [16]).

The importance of 8-finite merit orderings is a

,consequence of Theorem 4.2.2.: any search strategy

compatible with a 5-finite merit ordering is complete.

Any merit ordering for a finite set G is i-finite.
Ordering by levels is £-finite if r"-'' is finite and s(GI)

is finite for all G' C G, under the same conditions

inverse ordering by levels is not 6-finite if G is

infinite (by K6nig's Lemma).

Theorem 4.2.2. If (= (G,s,1,g) is a problem,

,.,N a S-finite merit ordering for G and a search ,I

strategy for compatible with ; , then is complete

for R .

Proof. Let N* E G be given. We need to show

that N* E ."i for some j > 0. If G is finite then

G = U :-5' . since i 0 implies that 9(
j) 0 i>0 i

and since 2(i) (1 i O. Otherwise if G is

infinite let N' < N* be a node such that N A -,N' for

all N < N*. Since -. is S -finite, since
i 0

implies that and since(i) C i
it follows for some j > 0 and for some N1 E

Nt.< N1, and therefore N
cN1

for all N < N* and by

Lemma 4.2.1 (a), N* E j .

4.3 Heuristic Functions aad Diagonal Search.

There is special interest in merit orderings

which can be expressed in terms of the cost function

g of ' _ (G,s, P,g) and of an additional heuristic

function h No [301, [331. A heuristic function h for b?

is a function h:G -, IR such that h(N) > 0, for all N E G.

Let f(N) = giN) + h(N) for all N E G. The intended

interpretation of the heuristic function h is that

f(N) = g(N) + h(N) is an estimate of the cost g(N*) of

a terminal node N* E P , such that N < N*, i.e. h(N) is

an estimate of g(N*) - g(N). If it is desired that L be
admissible then h(N) is intended to estimate the minimum

value of g(N*) - g(N) for N* E P such that N < N*.

Suppose, for example, that we know of a given problem

- 179 -

00 = G0'a0y 0,g0) that if it has a solution then its
minimum cost is k. Suppose for simplicity that no N e G has

cost g0 (N) greater than k. Given only this information then

an appropr,ate definition of a heuristic function h0 for

is h0 (N) = k g0 (N) for all N E G

Suppose that a given problem = (Gi , s1,, g1) is

interpreted as a resolution problem by a labelling function

c : G1 -, S*. Suppose that the inference rules r consist of

P. factoring operation for unifying two literals in a clause

and of a separate resolution rule for resolving at most two

factors. Let g1(N) be the level of N and
r1

= { N : c(N) = 1.

Fo 1 N e G. let 1(c(N)) be the length of c(N) (number of

literals in c(N)) The heuristic function h1 for (is

defined by the letting h1 (N) be the expected length of c(N)

(1) for N e 5 ,, h1(N) = l (c(N)),

(2) for c(N) a resolvent of c(N1) and c(N2)

h1(N) = 1(e(N1)) + 1(c(N2)) - 2,

(3) for c(N) a factor of c(N') (the result of

unifying two literals in c(N'))

h(N) =. l(c(N')) - 1.

To the extent that merging does not occur (i.e. so long as

h1(N) = 1(c(N)), h1(N) is a lower bound on the value of

91 (N*) ..
g1 (N) for c(N*) = 0 wheii c(N) occurs in a derivation

of 0 Notice that since r contains a factoring operation,

this operation is explicitly exhibited in dorivo.tions, contrary

to the conventions employed in chapters 1 - 3.

The costing function g and heuristic function h

allow us to define two important classes of search strategies

for . Given Q= (G,s, R ,g) and h a heuristic function

for Ur Let the merit orderings { d and for G be defined
d

for all N1 N2 e G, by

(1) N1 r6d N2 if and only if f(N2) < f(N2),

(2) N1 N2 if and only if f(N1) < f(N2) and
d

h(N1)<h(N2) when f(N,1) = f(N2).

A search strategy Y for P is a diagonal search strategy for P

and h (written Z E @ (tP,h)) if and only if ,is compatible

with the merit ordering d is an upw ds diagonal

search strategy for 6) and h (E j'((P,h)) if and only if
Z is compatible with the merit ordering u. Notice that

d

3u(h)c®(6)h) and that Zu(P,h) _ . (f ,h) if h(N) = 0

for all NE G.

Except for minor d.ifferances, the search strategies

e (6 h) coincide with those investigated in [16] for

the case of ordinary tree search. The search strategies

E ®u(,h) differ from those in O (P,h) by generating,

from among candi&.te nodes which have equal merit for d

those nodes whose cost is estimated to be closest to the

cost of a solution node. In the case of the problem and

heuristic function h0 , defined above, f0 (N) = g0 (N) + h0 (N)

= k for all N e G . All nodes in G have equal merit for

search strategies .`c" E (D(6, h0) . For E (0u(,h0
nodes which have cost closer to k have better merit than

- f81

nodes which have smaller cost. In case g0 (N) is the level

of N for all N E G then Z e Q is a depth-first search

strategy, which intuitively seems the most efficient search

strategy for (P , given only the information that a minimal

solution of must have level k. Concrete search algorithms

for 57 E iZ u(P1,h1) are discussed in the next section.

The terminology, diagonal and upwards diagonal search,

is suggested by representing nodes N E G as occupying

positions in the plane with co-ordinates (h(N),g(N)), where h

increases rightwards away from the origin and g increases

downwards away from the origin (see Figure 2). ,L.,e) ((;',h)

attempts to generate nodes on consecutive diagonals in order

of increasing distance from the origin (0,0). In addition if

z E 0 u(,h) then attempts to generate nodes, lying on

a given diagonal d, upwards in order of increasing h. I
-f d or ,,,,u are $-finite then each diagonal contains only

d
finitely many nodes N E G and for every diagonal d there

are only finitely rnar.j diagonals which contain nodes N E G

and which are closer than d to (0,0).

(0,0)

h

g Figure 2.

Figure 3 illustrates Lemma .2.1 and Theorem 1..2.2 .

for a problem $ and for a search strategy 5 e Ou(11,h)

where u is assumed to be 6-finite. The node N* E F` has
4-1

d
minimum cost in P and N' < N* is a node having worst merit

in the set consisting of N* and all ancestors of N*. The

node N C G has better merit than N* and N if < N has worst

merit in the set consisting of N and all ancestors of N.

Dots represent nodes, lying on diagonals, generated by S
before the generation of N*. The small circles represent nodes

generated by after the generation of N** The diagonal d

contains the node W. By Lemma 1+.2.1 Z generates N* before

generating nodes having worse merit than N', i.e. before

generating nodes lying above N' on d and before generating

nodes lying on diagonals to the right of d.

d

N*

N**

g
Figure .

The heuristic function h satisfies no conditions other

than h(N*) = h(N**) = 0 and those imposed by the t-fi.niteness

- 183

of ., e . may fail to be admissible because some N** e P

having; worse merit than N* will be generated before N* if N**

and all ancestors of N** have better merit than Nr. The node

N E G will not be generated before N* if N" lies to the

right of d or above N' on d.

1#.4 Upwards Diagonal Search Strategies for Resolun.

The algorithm Z,* defined below approximates an

upwards diagonal search strategy for the resolution problem

(5)
1

and heuristic function h1 . The same algorithm L *

when applied to the resolution problem
2

and heuristic

function h2 defined below is a pure upwards diagonal search

strategy for 62
and h2. The admissibility and optimality

theorems of the next section apply to TY* for 62
and h2

and to for (91 and hl , except when merging occurs

in . A search strategy which differs inessentially

from Z* has been implemented in P0P2 by Miss Isobel Smith

for a problem and heuristic function similar to P1 and h1.

The definition and identification of the problem 2

was motivated by a suggestion of Mr. Donald Kuehner.

6
2 = (G 2' s2' P2 g2) differs from (P 1 by interpreting

clauses c(N) as lists of literals and by exDlicitly exhibiting

and assigning cost to the operation (treated as a special

case of factoring) of identifying two copies of the same

literal within a clause. The length l(c(N)) of c(N) is

defined as the cumber of literrals in the clause c(N), counting

duplications.
92 (N)

and h2(N) are still defined respectively

as the level of N and expected length of c(N).

h2(N) = 1(c(N)) for all N E G2 and h2(N) is always a lower

bound on the value of g2(N*) -
92

(N) when N < N* and

N*E 92 = 1N EG2 : c(N2) =G}.
Throughout the remainder of this section, 9= (G,s, P,g)

and h are either 6
1

and h1 or
`P2

and h2. The definition

of Z* for 9 and h is the same for both of these cases

except for the details remarked upon at the end of this section.

Clauses c(N) are stored upon the generation of N in

cells A(i,j) of a two-dimensional array a. c(N) is stored

in A(i,j) if 1(c(N)) = i and g(N) = J. Although it is

natural to represent cells A(i,j) as lists of clauses, we

write c(N) E A(i, j) if c(N) is stored in !1(i, j) when N is

generated. The merit of a node N E G is defined to be the

cell A(h(N),g(N)). The cell A(i,j) is said to be better

than A(i',j') (written ..(i,j) A(i',j')) if
(1) i + j < it + jt or

(2) i + j = it + j' and i < it.
Thus a node N E G has better upwards diagonal merit thannaa

node N' E G if and only if the merit of N is better than

the merit of N' , equivalently N -< u N' It if and only if
a

A(h(N),g(N))) A(h(N),g(N')). Notice that for 6) 2 and

h2, N E G2 has merit A(i,j) if and only if c(N) E A(i,j).

For OY
1

and h1, if N E G1 has merit A(i,j) then

c(N) E A(i',j) where it = 1(c(N)) < h(N) = i. ,*, on the

whole, attempts to generate nodes of merit..(i,j) before

attempting to generate nodes of worse merit A(it,jt) ?` A(i,j).

185 -

A node of merit A(i,j) is generated either

(0) by inserting into.L(ip0), when jam, a clause

c (N) where 1 (c (N)) = i and g(N) = 0,

(1) by unifying two literals within a clause

c(N) E A(i+1, j-1) or

(2) by resolving a factor c(N1) E .A41 , j1) with

a factor c(N2) E A(i2,j2) where N1 may be

identical to N2 and where

i = i1 + i2- 2 and

j = max (j1sj2)+ 1.

+ employs two subalgorithms for generating nodes

N E G. The principal subalgorithn Fill(i,j), generates in all

possible ways, from nodes already generated, nodes N of merit

A(i,j) which have worse merit than all their ancestors.

Fill (i,j) terminates wh.:?n all such nodes have been generated.

Fill (',j'), where A(i',j') is the next cell after A(i,j),

begins when Fill (i,j) terminates. 57 begins by invoking

Fill (0"0)

Whenever a node N0 is generated by Fill (i,j) the

second subalgorithm Recurse(0(N0)) .interrupts Fill (i,j)

and generates in all possible ways, from nodes already

generated, nodes N1 which are immediate successors of N0 and

which are of merit A(i1, j1) better than A(i, j). In general

whenever a node N is generated, either directly by Fill (i,j)
or by some call of Recurse (c(N')) which is local to Fill (i,j),

Recurse (c(N)) generates, from nodes already generated, immediate

successors of N which arQ_ of better merit than A(i,j). Notice

that if N is generated by Recurse (c(Nt) during Fill (i,j)

then N has better merit than some ancestor of merit A(i, j).
Notice too that the depth of recursion involved in Recurse

(c(N')) is bounded by the sum i+j.

Remarks.

(1) If 6) and h are 6)
2
and h2 and if c(N0) is

generated directly by Fill (i,j) then c(N0) E A(i,j) and

the only immediate successors of N0 which are of better

merit than A(i,j) are nodes N1 e A(i-1,j+1). Arty such

N1 generated by Recurse (c(N0)) is obtained either by

factoring c(N0) or by resolving c(N0) with a unit clause

c(N) of level g(N) < j. More generally if N0 is generated

by Recurse during Fill (i,j) and if c(N0)
E A(i0, j0) then it

is easy to verify that i0+ i
0

= i + j and therefore any

immediate successor N1 of better merit than A(i,j) is of

merit A(i0- 1,j0+ 1).

(2) If 9 and h are and h1 then * may

fail to do upwards diagonal search because of merging,

i.e. nodes may be generated by Recurse which have worse

merit than other candidates for generation. Suppose that

N0 is generated by Fill (i,j) and that c(N0) E A(i',j)

where it < i. Suppose that N1 and N2 of merit A(it -1, j+1)

are generated by Recurse (c(N0), N1 before N2. Suppose that

N3 of merit Alit -1 , j+2) -i A(i, j) is generated by Recurse

(c(N1))G Then N2 has better merit than N3 but N3 is

generated before N2 since Recurse (c(N1)) must terminate

before Recurse (c(N0)) generates N2.

- 187 -

(3) For both P 1 , h1 and 6)2, h2, Z * has the

desirable property of attempting to resolve every unit clause

c(N0) with all previously generated units c(N1) as soon as

c(N0) is generated. If N0 is generated.furing Fill (i,j)

and if c(N0) E &(1, jd) and c(N1) E 11(1, j1) then X1(0, max

(jo, j1)+ 1) .< ..(i, j) and. an attempt will be made to resolve

c(N0) with c(N1) during Recurse (c(N0))

(4) Suppose that Fill (i,j) has just begun, then

* has not yet generated any nodes of merit worse than

L(i, j). Thus a.f N has merit A(i, j) then either j = 0

and g(N) = 0 or c(N) is a resolvent of factors c(N1) and

c(N2) and both N1 and N2 are of merit better than A(i,j).

In order to generate all such nodes N i,-t sufficas to attempt

to resolve all clauses e(N1) with clauses c(N2) where

C1 F li,(lgk), C2, E 11(i-1+2, j-1)

for 0 < k < j-1 and

1 if i is even or 9 < 12

1 < 1 <+ 1° if i is o,d.

(5) The details for generating noCos during Pecurse

(c(N)) have already been discIssed for
X32

and h2 in remark '(I).

For 61
1

and h1 these details are more complicated. Suppose

that N has been generated during Fill (i*, j*) end. that

c(N) E L(i, j) . The following pro ;edure will generate

without rodunjaney, from codes generated before N, immediate

successors of it which are of better merit than 1i(i', j*) :
(a) First resolve c(N) with clauses in A(it, jt) where

j-1 < j'<i*+j*.-LT2,in order of decreasing j', and

for given J1, where 1 <f < i*+ j'1fi°- j t =-:L+1 in arbitrary

- 1 88

order but preferably in order of increasing it.
(b) Next generate factors of c(N) by attempting

to unify, in all possible ways, two literals

in c(N).

(c) Finally resolve c(N) with clauses in A(i',j')
where

1 < i' < i" + j* - i - j + I

0 < j' S j in arbitrary order but

preferably in order of increasing it.
W Let ' 3 = (G1 ,s1, P1 ,g3)wher-e g3 is defined as

g1 except for nodes N such that c(N) is an immediate

factor of a clause c(N') in which case g3(N) = g3(N') . In

other words & 3 is identical to 61 except that cost is not

assigned to the factoring operation. h3(I1) is still defined

as the expected length of c(N).

With only minor modifications * can be applied to

3. The details differ little from those already discussed

for applying I * to 91 .

L.5 Admissibility and Optimality of (D and 6) u.

Let
''2

= (G,s, P ,g) be an abstract theorem-proving

problem. For N E G let

H(N) = {g(N*) - g(N) : N* E P , N< N*) ,

h* (N) = inf)H(N) when H(N) 0 ,
h*(N) = 00 when H(N) = 0 ,

Then when N < Ne, for some N*E P', h*(N) is the greatest lower

bound on the additional cost over g(N) of g(N*). The heuristic

- 189 -

function h is intended to be an estimate of h*. The only

property of 00 needed below is that k < 00 for all real

numbers k. Since we do not allow h(N) = 00, it is often

impossible to construct a heuristic function h which gives

a perfect estimate of h*. In particular it is impossible

to incorporate into a definition of h any information that

a node N is not an ancestor a node N* E `` . However such

heuristic information can be applied to a problem 9 by

defining a new problem 0 ' which differs from (9 by containing

no such nodes N. Alternatively it is possible to allow

h(N) = 00 in which case several complexities need to be

introduced in preceding definitions (e.g. in the definition

of 9-finiteness).

A heuristic function h for satisfies the lower

bound condition for 9 if
h(N) < h*(N) for all N E G

i.e. if h(N) < g(N*) - g(N) whenever N* E (and

N < N*. Thus the lower bound condition

constrains in effect only the value of h(N) when N is an

ancestor of some solution node. Recall that h2 satisfies

the lower bound condition for 9 2 while hI does the same for

I except for merging.

Lemma 1+.5.1 states certain fundamental properties of

heuristic functions h satisfying the lower bound condition:

(a) h(N*) = 0 for N* E P , (b) no ancestor of a solution

node N* E ` has worse diagonal merit than IT",', (c) there

exists a solution node N* E F' having minimum cost in (if

- 190 -

diagonal merit is d-finite.'
Lemma 4.5.1 Let 6 > = (G,s, P,g) be an abstract

.theorem-proving problem and let the heuristic function h

for l " satisfy the lower bound condition.

(a) If N* E P' then h(N*) = h*(N*) = 0 and

therefore f(N*) = g(N*).

(b) If N* E ' and N < N* then f(N) < f(N*).

(c) If 4 d is 6-finite then for some N* E P

g(N*) < g(N) for all N E V" , provided F' 0.

Proof. (a) is obvious, since H(N*) = {0} and h*(N*) = 0.

(b) If N* e P and N <.N* then h(N) < g(N*) - g(N). But then

f(N) = g(N) +h(N) < g(N*) = f(N*) .

(c) If A d is 6-finite then for all N E G, the set

{N' I f(Nt) < f(N), N' E G} is finite. In particular for

N E P the set {N' I g(N') < g(N), N' E ` } is finite and

therefore contains an element N* such that g(N*) is minimal.

But then g(N*) < g(N') for all N' E F.
Theorem 4.5.2. If d is ,s-finite for = (G,a,F,g)

and if h satisfies the lower bound condition for 63 then

e W (G,h) is admissible for ,V-c
.

Proof. Assume that P . Let N* E P be such

that g(N*) < g(N) for all N E f (such an N* E f exists

by Lemma 4.5.1 (c)). By Theorem 4.2.2. L is complete

and therefore there is a stage isuch that for some N,

N E l 11 L i and fi f1i-1 =

191

Suppose that F- is not admissible for 9 . Then g(N*) < g(N).

But, by Lemma 4-5 -1 for all N' < N*, f(N') < f(N*) = g(N*) < f(N).

So f(N') < f(N) for all N' < N*. But t hen N' N for all Nt < N*.

By Lemma 4..5.1 (a), N* e i-1
and therefore (1 Li-1 0 ,

contrary to assumption.

Theorem 4..5.2 specializes to a generalisation of Theorem 1

in [16]when s(G') = 0 for all GI C G which are not

singletons. In particular it is not necessary to require that

0 be finite or that g(N) be strictly greater than g(N')

whenever N'<- N. Since the specialization yields a tree

representation of graph search, it is unnecessary to distinguish

between the cost g(N) and the total cost along some minimal

path to N.

Figure if illustrates Lemma 4..5.1 and Theorem 4..5.2.

l , Z , N*, N' t N and N" are as in Figure 3, but h

satisfies the lower bound condition. By Lemma 4.5.1, N' lies

on the same diagonal d as does N*. F is admissible since arty

N** E F" having worse merit than N* lies on a diagonal to

the right of d and is not generated before N*. It is still
possible for a node N e G to have better merit than N* and

not be generated before N* because N" has worse merit than Nt.

(0,0) d

h

N*

g Figure

1 92 °-

To prove the appropriate extension of the Hart Nilsson-

Raphael Theorem on the optam .lity of Z e (u, we need to

formulate an assumption equivalent to their "consistency

assumption". The reader familiar with [16] will easily

convince himself that the following condition is equivalent

to the consistency assumption. We say that the evaluation

function f satisfies the montonici condition if
f(N') < f(N) for N4 < N and

f(N*) = g(N*) for N' E P.

(The first condition is equivalent to

h(N) > h(N') + (g(N') - g(N)) for N' < N).

Notice that for 92 the evaluation function f2= g2+ h2

satisfies the monotonicity condition whereas for) 1 the

function f1= gl + hl is monotonic except for merging.

Figure 5 Illustrates upwards diagonal search when the

funcion f satisfies the monotonicity conditions

, Z, N*, N', N &nd N'' are as in Figures 3 and 1+.

By Lemma 1+.5.3, h satisfies the lower bound condition and

therefore L is admissible and N' lies on the same diagonal

as N*. The monotonicity condition implies that if N has

better diagonal merit than N,* then all ancestors of N

have better merit than N* and therefore, by Lemma 4.2.1, IT

is generated before, N* e

-- 193 --

(o,o) a

h

N*

g Figure .

Lemma 4.5.30 ?,et P = (G,s, P' ,g) be an abstract

theorem-proving problem, let h be a heuristic function

for 6) and, let f satisfy the monotonicity condition,

where f(N) = g(N) + h(N), N E G. Then

(a) h satisfies the lower bound condition,

(b) If
. E 4 (Q,h), N1 E and N2 E (i) then

f(N1 < f(N2).

Proof. (a) h satisfies the lo,ror bound condition if
h(N) < g(N*) .. g(N) whenever N* E P and N < N*.

But the monotonicity of f implies that

f(N) = g(N) + h(N) < f(N*) = g(N*).

So h(N) < g(N*) - g(N).

(b) Suppose the contrary, namely that

N1 E 7i _. N2 E 2 . (Z i) and f (N,) >f(2) .
But then, since f(NT) < f(N) < f(N1) for all N' < N2,

it follows that N'-', N1 for all NT < N2. By Lemma 4.2.1 (a),

N2 E 7 -1, contradicting the assumption that N2 E Z (Zi)
For the case of ordinary graphs, the optimality theorem

(Theorem 2) of [16] compares, in effect, search strategies

£ e O(tP r h) with strategies

-194-

' E Q) (6D,ht) where ht (N) G h(N) for all N e G and where

f = g + h is monotonic. (In [16] the search strategy F' is

assumed only to be no better informed" than E - we interpret

this to mean that h' (N) < h(N) and E IP ,h').) If
and are the first sets which cohtain nodes N* E

then i C :E! it U G' where G' is the set of nodes N e S

which have diagonal merit equal to N* E "E i n P', i.e. b ore

termination y ' generates all the nodes generated by

except possibly for unlucky choices by of nodes tied for

merit with the solution node N* E 5 i. Theorem 4.5.4

below generalizes Theorem 2 of [16] and implies in addition

that 5 u is an optimal subclass of

It should be noted that the monotonicity condition on f in

Theorem 4.5.4 can be replaced by the lower bound condition on

h with the result that ' may now fail to generate nodes

in the larger set G' of nodes N E i where some N'
has diagonal merit tied w ith the solution node N* E i
A special case of this modification of Theorem 4.5,,4 is

illustrated by the example of Figure 6, following the proof

of Theorem 4.5.4

Theorem 40=4.

Let _ (G,s, P,g) and let h and h' be heuristic

functions for 6) such that

ht(N) 5 h(N) for all N e G.

Let f(N) = g(N) + h(N) and ft (N) = g(N) + h' (N).

Suppose that f is monotonic. Given E (W(6,h) and

M' E {= ((,h'), suppose that

- 195 -

N1 E /1:E i, Pn i-1 = 0 ,

N2 E Pn ' i f and t n

Then 'i C £ i t U G* where

G* { N : N E,-i and for some N' < N1,

f(N) = f(N') = f(N1) and h(N) < h(N')

Proof . £ r satisfies the lower bound condition since

h' (N) < h(N) for aj.1 N E G and sinco , satisfies the

lower bound condition. Therefore both and ' are

admissible and g(N1) = g(N2), f(N1) = f(N2). Suppose

that N E X i and that N J Ft it . It suffices to show

that N E G*.

By Lemma 1..2.1 (b), N E Z i implies that N 4 uNt for some
a

Nt < N1. But by Lemma 4.5.3 (b), since f is monotonic

f(N) < f(N1),

f(N')<f(N1),

f(N?') <f(N) for all N't < N.

But ht(Nt') < h(N't) implies

ft(Nr t) < f(N't). S,o

ft(Nt') < f(N) for all N't< N.

Also N Eli, and if2 E ' j, imply by Lemma 4.2.1 (a) that

for some N't < N, Ntt '>d N2, i.e.

N :i< UN' implies
d

fI"N'') > ft(N2) = f(N1). So

f(N) > f(N1) and

f(N) = f(N1).

f(N) <f(N') < f(N1). So

f(N) = f(Nt) = f(N1) and

h(N) < h(Nt), i.e.

N E G*.

- 196 -

Figure 6 compares nodes generated, before the generation

of a given N* E F , by different search strategies

2 E t,) ((9,hi) for a fixed problem 6 = (G,s, g) and

for different heuristic functions hi. h1(N) is assumed to be

a greatest lower bound on the value of h *(N) when N < N*,

where N* has least cost in . Nodes N E G are represented

as points with co-ordinates (h1(N), g(N)). The node N; has

worst upwards diagonal merit in the seja consisting of N* and

the ancestors of N*. The functions hi are defined by

hi(N) = i.h1(N) for all NE G, 0 < i E r1 k.

(0,0) dI d d d
7 -4

For 0 < i < 1 hi satisfies the lower bound

condition for ? and ! i is admissible for t? . a i need

not be admissible for when i> 1 . The area to the left
of the line di contains nodes generated by 2.i before the

generation of N*. For 0 < i G 1, i generates all the

nodes generated by 1 . Fox i > 1 , generates all the

nodes left of di which have been generated by
1

0 No 2, is

- 197 --

more efficient than F 1
if i < 1. Some Z i may generate

fewer nodes than 1
if i > 1, but this possibility becomes

more remote as i increases. However even for large i,

Z1i
may be more efficient than , for generating solution

nodes of arbitrary cost. A more thorough analysis of

relationships similar to those discussed here has been made

by Ira Pohl in [321 and [331 .

t+.6 Resolution of Marked Factors with ;-Factor as Nucleus.

For resolution systems which employ separate rules

for factoring and for resolving clashes of factors,

Theorem 1+.6.2 implies the refutation completeness of

generating only i-factors of nucleus clauses. This

oompleteness, which is subject to certain restrictions on

the given resolution rule, applies to AM-resolution and to

hyper-resolution in particular. For the case of systems

which employ marked factoring and p1-resolution of

marked factors, 4.6.2 implies that non-positive clauses need

never be factored. As reported in [17] , this restriction

can be combined with the method of section 20 for obtaining

unique decompositions of hyper-resolution clashes. A theorem

related to 1+.6.2 was reported by Raphael in [36].

Lemma 1j.6.1 . Let C = { A1, ...,&naB }
be a

clash with resolvent C . Then there exists a clash of

marked factors Cc {A'11,...,A'1m1,...&'n1$...,At , B'1
n

with rosolvent C? such that

(a) B' is an i-factor of B,

- 198

(b) Arij is a variant of a satellite factor of Ai,

1 < j < mi'
(a) C is an instance of C'.

(d) e is restricted if C is.
Proof. By 1.6.1 there exist marked factors

e i is an

Bt t = {K1, ,Kn} U Bart of B and

At = {Li} U At 0i of 11i such that

C (A®1' U ... U AQn' U B0'r) ®1 where

m.g.s.uu of

e1 = { {L1,K1 } ,..., {Ln,f111}

B"= B e 2 where e2 is an m.g.se u * of

2
= { F1 , ...,Fn} B = F1 U ... U Fn U B®

and. U (F1 U ... U F) is the set of

distinguished literals resolved upon in B.

'For 1 < i n let

Fi = {Ki1,...,Kim i } and let B' be the

i-factor of B with distinguished literals U (F1 U . . U Fn)

Let A j = { Lij} U A'aij be a variant of Ait

such that Ail = A! and such that C' above is standardized.
1

Let
9

be a substitution such that

At j I = Ail = Ai for all i, j, 1 < i < n,

1 < j < zni

Let 3 = { L11'111} ,..., {Lipfij} ,...,
{LM 'Kim }}.

n n

Then

Therefore r(
e2

e1
unifies C3 . Let

e3
Le an m.g.s. u

of F-3. Then for some A , e 2 e1 = e 31(

-199 -

The resolve nt of eJ is

C' (A411 U...UAC'ij U..U.c_'©rm U BO) &3.
n

At
62e1

U..0U ADij @261 U...U Ate ®261 U BC ®261

= A g1 U ...U A'Oi e1 U ...UL ton el U B0'' 61

= C.

We have shown that (a) - (c) hold. Suppose that' is

restricted and that (' is not. Then

Lij63 EC' orKij63 EC'

for some i and j, But then

Li j e3 A = L. j g2 61 = L. 91 E C14 = C or

Kij ®3 4 _Kij e2 e1 = Ki 61 E C',(= C.

So C " _ } Al',..., An',B'' } and C, are not restricted,

For the statement of Theorem 4.6.2 and for the

remainder of this chapter it is convenient to exhibit

clashes of factors explicitly as clashes in derivations.

A factor-derivation = (T,c) of a clause C from a set of

clauses S is a dervation such that

(1) for each tip N E T. c(N) is a factor of a clause

in S,

(2) for each interior node N E T, c(NNT) is a factor

of the resolvent of the clash of factors c(s-1(N)),

Notice that the factoring operation is not exhibited in

factor-derivations. If every clash in a factor-derivation (D

is a clash of marked factors then 1 is a marked factor-

derivation. To simplify the statement and proof of Theorem

4.6.2 we allow the clause c(r(T)) in a marked factor

derivation (j = (T,c) to be unfactored.

- 200

Theorem 4a6.2. Let 6 = (T,c) be a elash derivation

of a clause C from a set of clauses S. There exists a

marked factor O.erivation (y' = (T',c') from S of a clause

C' which has C as instance. Every nucleus factor in 0t is

an i-factor.

To every node N' a T' there corresponds a node N e T

satisfying the following conditions :

(a) If N' is a tip of Tt then N is a tip of T and

c'(N') is a marked factor of c(N),

(b) If N' i3 interior to T' then N is interior to T

and c(N) is an instance of c'(N'). Lot

(3 = c(sr1(N)) and (' = c'(s^1(N')).

(2) Satellites of C correspond to satellites of

' and the nucleus of a corresponds to the

nucleus of C'.
' is restricted if (3 is.

Proof (by induction on the number -n of nodes in T).

If n = I then (1)' = 0 satisfies the requirements of the

theorem. If n > I let N© = r(T) and sr1(N0) = { NI , ...,Nm}

We may assume by way of induction hypothesis that to each

derivation 0i = (TN , c), I i< m, there corresponds a i
marked factor derivation (i = (T!,e'i) which satisfies

the theorem relative to .. i
Let Ni' = r(T !) , (* c,' (N') , ..., c' m(N' m) {

and ,. = o(s
-1(%))

. C * subsumes 2 . By Lemma 1 ,,10.1,,

* is a clash which covers (3, o (NO) is an instance of the

resolvent C * of e*. Let C3* be the (3 of Lemma 4.6.1 and

- 201

letC be the corresponding set of marked factors with

resolvent C' which has C* and thoreforo c(N0) as an instance.

The desired marked factor derivation (T',c') is

determined by the f cllowing conditions.

(1)

(2)

r(Tt) = No' and c' (NQ') = C'

c'(s(N0')) = C'. For N'
s,_'(N0'),

TtNt is

an isomorphic copy of Ti where ct(Nt) is a

marked factor of ci(N(T=Nt,ct) is a copy

of ()'i, except that c'(N') is a marked factor of

(N!

p' :.satisfies (a) and (b) of the theorem. N0 corresponds

to N0' and if N oorrespond.s to N' in 6)' then N corresponds

to the appropriate copy of N' in

Notice that the level of G t in (5)t is the same as the

level of C in 6) , however the number of factors in a clash

t of (D t is often greater than the number of clauses in

the corresponding clash C of (D .

4- m-I'actor Derivation: .

m-Factor erivations are of interest for at least two

reasons: First (Theorem 407.1), m-factoring provides an

effective method for implementing merging restrictions. In

particular the restrictions investigated by lindrews for ground

derivations [2] can be lifted to general derivations by

imposing m-factor restrictions. Second (Theorem 4.7.3),

mj-factoring is always more efficient than the Wos Robinson

factoring method (for search strategies L which give

- 202 -

preference, among clauses of equal level}; to clauses of

shorter length),

Recall that a factor of a clause C is a clause C e

where e is an m.g.s. U. of some partition of C (equivalently,

some complete partition of C). m-factors are defined only

for resolvents of clashes : if C 0 is a factor of a

resolvent C of a clash G then C e is an m-factor (merging-

factor) of C if a does not unify literals in C which

descend from the same parent in C .
Let e _ D2 U

D®,
.,Dri En U DCn} be a clash

where Ei is the set of literals in Di resolved upon in 0.
Then C = (DC U .,. U DQ n) A t is the resolvent of C ,

where e' ij an m.g.s. u. of C . A factor CO of C is

an m-factor if
L, , L2 E DCi and L1 e s A L2 s t imply

L1 e' a L2 of e .

m-factoring restrictions can be strengthened by limiting

attenticn to m-factors of m-resolvents. C is an

m-re s olv ent of ' if
Tjj,L2 E Doi and L r L2 1417

L101 A L2 at .

Thus C 6 is an m-factor of an m-resolvent C of a clash

if end only if
L1 ,L2 E DOi and I., L2 imply

LIetb A L2e e

A factor derivation (S _ (T,c) is an m -factor derivation

if for every interior node N E T, c(N) is an m-factor of

- 203 -

an m resolvent of the clash of factors c(s-1(N))

An m-factor C& is a merrge if at least two literals

in distinct parents of C are unified by e'e , i.e. if

for some

L1 s DOi, L2 E Dad, where i J,

L1 e' e = L2 9' 6

This definition coincides with Andrews' in the case of

ground clashes and ground resolvents. Notice that if

C _ { D1, ...,Dnj is a clash of n factors then Ce is a

merge if and only if
1 (C e) < l(D1)+...+ l(Dn)-2(n-1).

Theorem L .J.1 . Let 0 = (T,c) be a ground derivation

from a set of clauses S and let S be a set of instances

of clauses in S'. Then there exists an isomorphic m-factor

derivation 01 = (T, c') from S.

For all N E T

(a) c(N) is an instance of c'(N),

(b) 1(c(N)) = 1(c'(N)),

(c) if N is interior to T then

(i) c'(N) is a merge if and only if c(N) is and

(ii) c'(s-1(N)) is restricted if C(3-1 M) is.

Proof (by induction on the number of nodes n in T)e

If n = I then T = {N 0 } . Let C = c(NO). Then C is an

instance C' c- of some clause C' E S' .

Let C = { L1,...,L{ and {E1,..0,E where

Ei = {L' E Cl : L' a- = Li} . F, is a complete partition

of C' unified by o- . Let e be an m.g.s, u . of (then

-204-

0- = &A, for some A . Let c'(N0) = Cte then c(NO) is an

instance of c'(N 0) and contains the same number of literals

as c'(N0).

Suppose that n > 1 and that the theorem holds for

any ground derivation containing fewer than n nodes.

Let N0 = r(T), s-1 (N0) _ }N1,...,Nm} and of = (TN c) for i
1 < i < m. By the induction hypothesis there exist m--factor

derivations (TN,ci) from S' satisfying (a)-(c) for

NeTN, 1 <i<m. i
Let e _ e(s`1(N0)), C * c(N0,) andCl, =

{c1'(N1),..e,c'm(Nm) } . Then (' subsumes (f, and therefore

corers is restricted if e is and the resolvent

C' of (,` ' has C as an instance. Let c' (N0,) = C' e be

defined as in the case n = 1. Then c(N0) is an instance of

c'(N0) and contains the same number of literals as c'(NO).

Let tD' _ (T,c be defined by c' (N0)= C' a and

c'(N) = c'i(N) for N E TN.

z
It suffices now to show that C' a is an m-factor of

an m-resolvent of ('. Suppose that, on the contrary, there

are distinct literals L1 and L2 in some c'(Ni) such that

L1 @' e = L2 et e where e t is the m.g.s. tY . of C t at N0 .

But then, since ?' covers (2 and since C is a ground resolvent,

(a '(Ni)0- = c(Ni) for some a- and

t t (NO) A = c(N0) for some /, such that c- _ jP'

L1 a- and L2 a- are distinct in c(Ni) (since c'(Ni) and

c (Ni) contain the same number of literals) . Therefore L10-

and L2o-are distinct in c(N0). But then L1e'& and L2e'e

- 205 -

are distinct, contrary to assumption.

Lemma 4.7.2. Let e={D1 =E10D01,...,Dn=EnI)DOn}

be a clash of factors with resolvent C = (Do1 U ... U Don) 0.

Let D = 0 0' be a factor of C. Then there exists a clash

of factors 3' = { D ' 1 = E ' 1 l) D'01,...,D'n _ Eln U DIOn}

where for each i, 1 < i < n, D'i is a factor Di 9i of Di, and

D is an m-factor of the m-resolvent C' of (''.

Proof. Let e' be an m.g.s.u. of the complete

partition e' of C. Then we can represent F" as

10
t = {G1 ®,...,Gk 9} where

C. = Gj1 000sUGjn, Gji C Doi and

L e Doi, L 0 E GjiG imply L E Gji.

Then= 1G1i,..,Gki} is a complete partition of Doi.

Let

P," -- ,U{G1,...,Gk}

where E° is the family of literals resolved upon in ,.

Then 9 0' is an m.g.s.u. of " since Z is a refinement of
0 is an mg.s.u. of and e' is an m.g.s.u. of 0.

On the other hand, each Ci is a refinement of e" az4 none

of the refinements '1,...; Cn share rariables. Let ei be

an m.g.s.u. of F, i. By 1.3.5, 01 ...0n9" is an m.g.s.u.

of where G" is an m.g.s.u, of

P,
it e1...en = e e1...en U{G1,...,Gk} 4) 1...en.

Let D'i = DiOi. Then L"" = {D'1,...,D'n} is a clash

- 206 -

and the family of literals resolved upon in (2' is 61...On.

Let 0* be an m.g.s.u. of F;010..0n The resolvent of (,' is

C'.TD0191 0*U ...UDOnene*.

Since ,e1...9n is a refinement of E" 01...9 n, 0* 9**

is an m.g.s.u. of 4'" 01...On where 9** is an m.g.s.u. of

. e" 01...9nG* _ e 0116..One* U{G1,...,Gk}01...On G*

But then 01...9nO*0** is an m.g.s.uo of " and because

E 01...0n 0* is already unified we may take 9** to be an

m.g.s.u. of

{G1,...,Gk} 91...8n0*,

which is a partition of C'. Let D' = C' O**

Then
D' = (D01010* U...U Don nO*) 0**

(D01 U...U DOn) 010.09ne* 0**

(D01 U...U DOn) 0 9'

_ D.

It suffices to show that D' is an m-factor of an

m-resolvent of C'. Suppose not. Then for distinct

literals L'1 and L'2 in some D'Oi = D0i 9i,
L'1 e* a** = L'2 9* g**.

But then there are distinct literals L1 and L2 in DOi such

that L'1 = L1 Ol, L'2 = L2 0i and L1 0i 0* 0** = L2 01 0* O**.

Therefore

L1 01...O 0* 9** = L2 01... en 0* 0** and

L1 00' =L29e'.
So L1, L2 C Gji for some j. But 0ji ei is a singleton

and therefore L1 0i = L2 0i and L' = L'2 contrary to assumption.

z07

Theorem L«7.3. Let (D= (T,c) be a factor derivation

of a factor C from a set of clauses S. Then there exists

an isomorphic m-factor derivationt = (T,c') of C from S

such that
c(N) is a factor of c(N) for all N E T.

Proof. (by induction on the number n of nodes in T).

If n then ti t =*,; suffices. Suppose that n> 1 and that

the theorem holds for any factor derivation containing

fewer than n nodes.

Let N0 _ r(T), s_1(1Q) _ N1,.,Nm} , C = c(Np) and

}c(N1),...,c(Nm)I . By Lemma 4.7.2. there exists a

clash (-',' = {D1 , ...,Dm} , where D i is a factor of c(Ni),

1 < i < m, and C is an m-factor of the m-resolvent of C'.
Let 6)i be the factor derivation (TN. ,on) which is identical

to (TN, c) except that ci(Ni) = Di instead of c(Ni). By

the induction hypothesis for each i, 1 < i S m, there exists

an m-factor derivation 6)i' = (TN ,c'i) of Dl such that
1

cIi(id) is a factor of ci(N) for every N E TN

Let 6) t = (T, c') where c' (NQ) = C and c' (T?) = cti (N)

for N ETN.. is the required m-factor derivation of C.

Theorem 4.7v3 states that any clause (or factor) C,

derivable by a factor derivation 4 , can be derived by an

isomorphic m-factor derivation t V Moreover J1' is no more

complicated than in the sense that no factor in b' contains

more literals than the corresponding factor in 6 . Search

strategies : (such as level saturation or up,vards diagonal

search) which generate simpler before more complex derivations

203 --

will generate m-factor derivations before isomorphic factor

derivations which are not uhfactor derivations. Let 7be
such a strategy and let (k , 7) be a proof procedure

employing T- and an inference system j which incorporates the

Wos-Robins on factoring method (w-R method). Let ('S s ',)

differ from only by using the m-factoring method

instead of the !--R method. If (1 ,) generates n

derivations and (j', 5) generates nt derivations before

obtaining a first refutation then n = n'+ k where k is

the number of non m-factor derivations generated by

before the generation of a first refutation.

-- 209 -

REFERENCES

[1) Allen, 3., and Luckham., D., An interactive theorem-

proving program. Machine Intelligence 5,

Edinburgh University Press (1970) pp.321-336 .

[2] Andrews, P.B., Resolution with merging. Journal

of the Association for Computing Machinery,

volume 15 (1968) pp.367-381.

[3]

[4]

[5]

Brown, T.C., Resolution with covering strategies

and equality theory. California Institute

of Technology, California (1968)

Chang, C.L., Renamable paramodulation for automatic

theorem-proving with equality. National Institute

of Health, Bethseda, Maryland (1969).

Darlington, J.L., Automatic theorem-proving with

equality substitutions and mathematical induction.

Machine Intelligence 3, Edinburgh University

Press (1968) pp. 113-127.

[6] Darlington, J.L., Theorem-proving and information

retrie,ral. Machine Intelligence 4, Edinburgh

e University Press (1969) pp.173-181.

[7] Davis, M., Eliminating the irrelevant from mechanical

proofs. Proceedings of Symposia in Applied

Mathematics, volume 15, American Mathematical

Society (1963) pp.15-30.

-210-

[8]

[9]

Doran, J. and Michie, D., Experiments with the

graph traverser program. Proceedings of the

Royal Society (A), volume 294 (1966) pp.235-259.

Gele!'nter, H., Realization of a geometry theorem-

proving machine. Proceedings of the IFIP

Congress 1959, pp.273-282.

Gilmore, P.C., A proof method for quantification

theory. IBM Journal of Research and Development,

volume 4 (1960) pp.28-35.

[11] Gddel, K., her die Lange von Beweisen. Ergebnisse

eines math. Koll., volume 7 (1936) pp.23-24

[12] Gould,W.E., A matching procedure for w-order logic.

Science Report No.4, AFCRL 66-781 (1966).

[13] Green, C.C., The application of theorem-proving

to question-answering systems. Ph.D. thesis,

Stanford University, Stanford, California. Also

Stanford Artificial Intelligence Project Memo

AI - 76 (1969).

[14] Guard, J.R., Oglesby, F.C., Bennet, J.H. and Settle,

[15]

L.G., Semi-automated mathematics. Journal of

the Association for Computing Machinery,volume 16

(1969) PP- 49-62.

Hart, T.P., A useful algebraic property of Robinsonbs

unification algorithm. Artificial Intelligence

Project Memo 91, Project MAC, M.I.T., Cambridge,

Massachusetts (1965).

- 211 -

[16] Hart, P.F., Nilsson, N.J. and Raphael, B., A formal

basis for the heuristic determination of minimum

cost paths. I.E.E.E. Transactions on System

Sciences and Cybernetics (July 1968).

[17] Hayes, P.J. and Kowalski, R.A., Semantic trees in

in automatic theorem-proving, Machine Intelligence 4.

Edinburgh University Press (1969) pp. 87-101.

[18] Kleene, S.C., Mathematical Logic. John Wiley and

Sons, Inc., New York (1967).

[19] Kowalski, R,L., Panel discussion, 11ormal systems

and non-numerical problem solving by computers.

Fcurth Systems Symposium, Case Western Reserve

University, Cleveland, Ohio (November 1968).

[20] Kowalski, R.A., The case for using equality axioms

in automatic demonstration, Proceedings IRIA

Symposium on 1,utomatic Demonstration, Versailles,

France, December 1968. Springer-Verlag (in press).

[21] Kowalski, R.A., Search strategies for theorem-proving.

Machine Intelligence 5, Edinburgh University

Press (1970) pp. 181-201.

[22] Loveland, D.W., Mechanical theorem-proving by model

elimination. Journal of the Association for

Computing Machinery, volume 15 (1968).pp.236-251.

- 212

[23] Loveland, D.W., A linear format for resolution.

Proceedings IRIA Symposium on Automatic

Demonstration, Versailles, France, December 1968.

Springer-Verlag (in press).

[24] Luckham, D. Refinement theorems in resolution

theory. Proceedings IRIA Symposium on Automatic

Demonstration, Versailles, France, December 1968.

Springer-Verlag (in press) .

[25] Meltzer, B., Theorem-proving for computers: some

results on resolution and renaming. The Computer

Journal, volume 8 (1966) pp. 341-343.

[26] Meltzer, B., Some notes on resolution strategies.

Machne Intelligence 3, Edinburgh University

Press (1968) pp. 71-75.

[27] Meltzer, B., Power amplification for theorem-provers.

Machine Intelligence 5, Edinburgh University

Press (1970) pp. 165-179.

[28] Morris, J.B., E-resolution: extension of resolution

to include the equality relation. Proceedings

of the International Joint Confe:^ence on Artificial

Intelligence, Washington, D.C. (7-9 May 1969)

pp. 287-294,

[29] Nerode, A. and Smullyan, R.M., Review of E.W. Beth,

The foundations of mathematics, a study in the

philosophy of science. The Journal of Symbolic

Logic, volume 27 (1962) pp. 73-75.

213

[30] Nilsson, N.J., Searching problem-solving and game-

playing trees for mininal cost solutions.

IFIP Congress Reprints (1968) pp. H 125-130,

[31] Norton, M.N., ADEPT - a heuristic program for proving

theorems of group theory. Ph.D. thesis, M.I.T.,

Cambridge, Massachusetts (1966).

[32] Pohl, I., Bi-directional and heuristic search in

path problems. Ph.D. thesis. Stanford University,

Stanford, California. Also SLAG Retort No.104 (1969).

[33] Pohl, I., First results on the effect of error in

heuristic search. Machine Intelligence 5,

Edinburgh University Press (1970).

[34] Prawitz, D., An improved proof procedure. Theoria,

volume 26 (1960) pp. 102-139.

[35] Prawitz, D., 40.vances and problems in mechanical

proof procedures. Machine Intelligence 4,

Edinburgh University Press (1969) pp. 59-71.

[36] Raphael, B., Some results about proof by resolution.

SIGART Newsletter No.14 (February 1969) pp. 22-25.

[37] Robinson, G.A. and Wos,L., Completeness of para-

modulation. Abstract, The Journal of Symbolic

Logic, volume 34 (1969) p.160.

[38] Robinson, G.A. and Wos, L., Paramodulation and

theorem-proving in first-order theories with

equality. Machine Intelligence 4, Edinburgh

University Press (1969) pp. 135-150.

_.214-

[39] Robinson, J.A., Ai machine:-oriented logic based

on the resolution principle. Journal of the

Association for Computing Machinery. volume 12

(1965) pp23-41.

[40] Robinson, J.A., 1 -utomatic deduction with hyper-

resolution. International Journal of Computer

MatheatiosZ volume 1 (1965) pp. 227-234,

[41] Robinson, J.A., Heuristic and complete processes in

the mechanization of theorem-proving. Systems

and Computer Science, University of Toronto

Press (1967) pp. 116-124

[42] Robinscn, J,A., li review of autorLatic theorem-proving.

Proceedings of Sriposia in Applied Mathematics,

volume 19 (1967) pp.1-18.

[43] Robinson, J.Aa, The generalised resolution principle.

Machine Intelligence 3, Edinburgh University

Press (1968) pp. 77.-94.

[44] Robinson, J.L., New directions in mechanical theorem-

proviag. Proceedins of the IFIP Con. ress 1968,

pp.206-210 (Invited papers).

[45] Robinson, J.A., Mechanizing higher-order logic,

Machine Intelli erce 4, Edinburgh University Press

(1969) pp. 151.120.

[46] Robinson, J.11., The present state of rechanical

theorem-proving. Proceedings of the Fourth

gtems S posiun968 (in press).

- 215 -

[47]

[48]

Sandewall, E., Concepts and methods for heuristic

search. Proceedings of the International Joont

Conference on Artificial Intelligence, Washington,

D.C. (7-9 May 1969) pp. 199-218.

Sibert, E.E., A inachine:.oriented logic incorporating

the equality relation. Machine Intelligence 4,

Edinburgh University Press (1969) pp.103-133.

[49] Slagle, J.R., A heuristic program that solves

symbolic integration problems in freshman

calculus. Computers and Thought. McGraw-Hill,

New York (1963).

[50] Slagle, J.R., A proposed preference strategy using

sufficiency-resolution for answering questions.

Lawr?nce Radiation Laboratories Memo. UCRL - 14361

(1965)

[51] Slagle, J.R., Automatic Theorem-proving with renamable

and semantic resolution. Journal of the Association

for Computing Machinery, volume 14 (1967) pp.687-697.

[52] Slagle, J.R., Chang, C.L. and Lee, R.C.T., Completeness

theorems for semantic resolution in consequence

finding. Proceedings of the International Joint

Conference on Artificial Intelligence, Washington,

D. C . (7-9 May 1969) pp.281-285.

[53] Wos, L., Carson, D.F. and Robinson, G.A., The unit

preference strategy in theorem-proving. Proceedings

of the AFIPS 1964 Fall Joint Com-uter Conference.

volume 26, pp. 616-621.

- 216 -

[54] Wos, L., Robinson, G.A. and Carson, D.F., Efficiency

and completeness of the set of support strategy

in theorem-proving. Journal of the Association

for Computing Machinery, volume 12 (1965) pp.536.-541

[55] Wos, L., Robinson, G.L.., Carson D.F. and Shalla, L.,

The concept of demodulation in theorem-proving.

Journal of the Association for Computing Machiner ,

volume 14 (1967) pp. 698-709.

[56] Zoos, L. and Robinson, G.A., Maximal model theorem.

Abstract, The Journal of Symbolic Logic,

volume 34 (1969) pp. 159-160.

	PhD coversheet April 2012
	EDI-INF-PHD-70-001

